TTI: 9-1002-12

MASH TL-3 TESTING AND EVALUATION OF THE TXDOT T131RC BRIDGE RAIL TRANSITION

Crash testing performed at: TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807

Test Report 9-1002-12-4

Cooperative Research Program

TEXAS A&M TRANSPORTATION INSTITUTE
THE TEXAS A&M UNIVERSITY SYSTEM
COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/9-1002-12-4.pdf

Technical	Report	Documentation	ı Page
-----------	--------	---------------	--------

1. Report No. FHWA/TX-13/9-1002-12-4	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle MASH TL-3 TESTING AND EVALUATION OF THE TXDOT		5. Report Date Published: March 2013		
T131RC BRIDGE RAIL TRANSIT	TION	6. Performing Organization Code		
7. Author(s) William F. Williams, Roger P. Bligh, and Wanda L. Menges 8. Performing Organization Report No. Test Report 9-1002-12-4				
9. Performing Organization Name and Address Texas A&M Transportation Institute	10. Work Unit No. (TRAIS)			
College Station, Texas 77843-3135	11. Contract or Grant No. Project 9-1002-12			
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered		
Texas Department of Transportation	1	Test Report:		
Research and Technology Implementation Office		September 2011–August 2012		
P.O. Box 5080		14. Sponsoring Agency Code		
Austin, Texas 78763-5080				

15. Supplementary Notes

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Project Title: Roadside Safety Device Crash Testing Program

URL: http://tti.tamu.edu/documents/9-1002-12-4.pdf

16. Abstract

This project designed and crash tested a transition design for the Texas Department of Transportation (TxDOT) T131RC Bridge Rail that would meet the strength and safety performance criteria for Test Level 3 of American Association of State Highway Official's (AASHTO) Manual for Assessing Safety Hardware (MASH).

The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic rail deflection was 7.4 inches. No detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the limits specified in *MASH*. The 1100C crossed the exit box within the limits specified in *MASH*.

The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. No detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height. The 2270P vehicle remained upright during and after the collision event. Occupant risk factors were within the limits specified in *MASH*. The 22270P vehicle crossed the exit box within the limits specified in *MASH*. The TxDOT T131RC Bridge Rail Transition performed acceptably as a *MASH* TL-3 transition.

17. Key Words		18. Distribution Statement		
Bridge Rail, Aesthetic Rail, Longitu	No restrictions. This document is available to the			
Transition, Roadside Hardware, Crash Testing,		public through NTIS:		
Roadside Safety		National Technical Information Service		
		Alexandria, Virg	inia 22312	
		http://www.ntis.g	gov	
19. Security Classif.(of this report) Unclassified 20. Security Classif.(of the Unclassified)		nis page)	21. No. of Pages 106	22. Price

MASH TL-3 TESTING AND EVALUATION OF THE TXDOT T131RC BRIDGE RAIL TRANSITION

by

William F. Williams, P.E. Associate Research Engineer Texas A&M Transportation Institute

Roger P. Bligh, P.E. Research Engineer Texas A&M Transportation Institute

and

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

Report 9-1002-12-4 Project 9-1002-12 Project Title: Roadside Safety Device Crash Testing Program

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

Published: March 2013

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.

ACCREDITED ISO 17025 Laboratory

Crash testing performed at: TTI Proving Ground 3100 SH 47, Building 7091 Bryan, TX 77807 Wanda L. Menges, Research Specialist
Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager

Quality Manager Technical Manager

ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E., Design Division. John Holt, P.E., with the Bridge Division served as project advisor and was also actively involved in all aspects of this research including design conceptualization. The TxDOT research engineer was Wade Odell, P.E., with the Research and Technology Implementation Office. The authors acknowledge and appreciate the guidance and assistance of these individuals.

TABLE OF CONTENTS

		Page
LIST (OF FIGURES	ix
LIST (OF TABLES	xi
	TER 1. INTRODUCTION	
1.1	INTRODUCTION	
1.2	BACKGROUND	1
1.3	OBJECTIVES/SCOPE OF RESEARCH	1
CHAP'	TER 2. SYSTEM DETAILS	3
2.1	TEST ARTICLE DESIGN AND CONSTRUCTION	3
2.2	MATERIAL SPECIFICATIONS	6
2.3	SOIL CONDITIONS	6
CHAP'	TER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA	7
3.1	CRASH TEST MATRIX	
3.2	EVALUATION CRITERIA	7
CHAP'	TER 4. CRASH TEST PROCEDURES	9
4.1	TEST FACILITY	9
4.2	VEHICLE TOW AND GUIDANCE PROCEDURES	9
4.3	DATA ACQUISITION SYSTEMS	9
4.	3.1 Vehicle Instrumentation and Data Processing	
	3.2 Anthropomorphic Dummy Instrumentation	
	3.3 Photographic Instrumentation and Data Processing	
	TER 5. CRASH TEST NO. 490022-6 (MASH 3-20)	11
5.1	TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS	11
5.2	TEST VEHICLE	11
5.3	WEATHER CONDITIONS	11
5.4	TEST DESCRIPTION	11
5.5	DAMAGE TO TEST INSTALLATION	14
5.6	VEHICLE DAMAGE	14
5.7	OCCUPANT RISK FACTORS	
5.8	ASSESSMENT OF TEST RESULTS	19
5.	8.1 Structural Adequacy	19
5.	8.2 Occupant Risk	19
5.	8.3 Vehicle Trajectory	20
CHAP'	TER 6. CRASH TEST 490022-8 (MASH 3-21)	21
6.1	TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS	21
6.2	TEST VEHICLE	
6.3	WEATHER CONDITIONS	21
6.4	TEST DESCRIPTION	
6.5	DAMAGE TO TEST INSTALLATION	
6.6	VEHICLE DAMAGE	
6.7	OCCUPANT RISK FACTORS	24

TABLE OF CONTENTS (CONTINUED)

	Page
6.8 ASSESSMENT OF TEST RESULTS	30
6.8.1 Structural Adequacy	30
6.8.2 Occupant Risk	30
6.8.3 Vehicle Trajectory	31
CHAPTER 7. SUMMARY AND CONCLUSIONS	
7.1 SUMMARY OF CRASH TEST RESULTS	33
7.1.1 Crash Test No. 490022-6 (MASH Test 3-20)	33
7.1.2 Crash Test No. 490022-8 (MASH Test 3-21)	33
7.2 CONCLUSIONS	
CHAPTER 8. IMPLEMENTATION STATEMENT	37
REFERENCES	39
APPENDIX A. DETAILS OF THE T131RC TRANSITION	
APPENDIX B. CERTIFICATION DOCUMENTATION	49
APPENDIX C. SOIL PROPERTIES	61
APPENDIX D. CRASH TEST NO. 490022-6 (MASH TEST 3-20)	65
D1. TEST VEHICLE PROPERTIES AND INFORMATION	
D2. SEQUENTIAL PHOTOGRAPHS	
D3. VEHICLE ANGULAR DISPLACEMENTS	72
D4. VEHICLE ACCELERATIONS	
APPENDIX E. CRASH TEST NO. 490022-8 (MASH TEST 3-21)	79
E1. TEST VEHICLE PROPERTIES AND INFORMATION	
E2. SEQUENTIAL PHOTOGRAPHS	
E3. VEHICLE ANGULAR DISPLACEMENTS	85
E4. VEHICLE ACCELERATIONS	86

LIST OF FIGURES

Figure	Pa	age
Figure 2.1.	Details of the TxDOT T131RC Bridge Rail Transition Installation	4
Figure 2.2.	TxDOT T131RC Bridge Rail Transition before Testing.	5
Figure 5.1.	Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-6.	. 12
Figure 5.2.	Vehicle before Test No. 490022-6.	
Figure 5.3.	Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-6.	
Figure 5.4.	TxDOT T131RC Bridge Rail Transition after Test No. 490022-6	
Figure 5.5.	Vehicle after Test No. 490022-6.	
Figure 5.6.	Summary of Results for <i>MASH</i> Test 3-20 on the TxDOT T131RC Bridge Rail Transition.	
Figure 6.1.	Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-8.	
Figure 6.2.	Vehicle before Test No. 490022-8.	
Figure 6.3.	Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-8.	
Figure 6.4.	TxDOT T131RC Bridge Rail Transition after Test No. 490022-8	
Figure 6.5.	Vehicle after Test No. 490022-8.	
Figure 6.6.	Interior of Vehicle for Test No. 490022-8.	
Figure 6.7.	Summary of Results for <i>MASH</i> Test 3-21 on the TxDOT T131RC Bridge Rail Transition.	
Figure C1.	Summary of Strong Soil Test Results for Establishing Installation Procedure	
Figure C2.	Test Day Static Soil Strength Documentation for Test No. 490022-6.	
Figure C3.	Test Day Static Soil Strength Documentation for Test No. 490022-8.	
Figure D1.	Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views).	
Figure D2.	Sequential Photographs for Test No. 490022-6 (Field Side Transition Views)	
Figure D3.	Vehicle Angular Displacements for Test No. 490022-6.	
Figure D4.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6	
3	(Accelerometer Located at Center of Gravity).	. 73
Figure D5.	Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).	. 74
Figure D6.	Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).	
Figure D7.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6	. , .
8	(Accelerometer Located Rear of Center of Gravity).	. 76
Figure D8.	Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer	
<i>3 z</i> = z .	Located Rear of Center of Gravity).	. 77
Figure D9.	Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer	
<i>G z</i> = <i>z</i> .	Located Rear of Center of Gravity).	. 78
Figure E1.	Sequential Photographs for Test No. 490022-8 (Overhead and Frontal Views).	
Figure E2.	Vehicle Angular Displacements for Test No. 490022-8	

LIST OF FIGURES (CONTINUED)

Figure	1	Page
Figure E3.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8	
	(Accelerometer Located at Center of Gravity).	86
Figure E4.	Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer	
	Located at Center of Gravity).	87
Figure E5.	Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer	
	Located at Center of Gravity).	88
Figure E6.	Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8	
	(Accelerometer Located Rear of Center of Gravity).	89
Figure E7.	Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer	
	Located Rear of Center of Gravity).	90
Figure E8.	Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer	
	Located Rear of Center of Gravity).	91

LIST OF TABLES

Table		Page
Table 7.1.	Performance Evaluation Summary for <i>MASH</i> Test 3-20 on the TxDOT T131RC Bridge Rail Transition.	34
Table 7.2.	Performance Evaluation Summary for <i>MASH</i> Test 3-21 on the TxDOT	
	T131RC Bridge Rail Transition.	35
Table D1.	Vehicle Properties for Test No. 490022-6.	
Table D2.	Exterior Crush Measurements for Test No. 490022-6.	66
Table D3.	Occupant Compartment Measurements for Test No. 490022-6.	67
Table E1.	Vehicle Properties for Test No. 490022-8.	
Table E2.	Vehicle Parametric Measurements for Vertical CG.	80
Table E3.	Exterior Crush Measurements for Test No. 490022-8.	81
Table E4.	Occupant Compartment Measurements for Test No. 490022-8.	82

CHAPTER 1. INTRODUCTION

1.1 INTRODUCTION

This project was set up to provide the Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria and develop new devices that address identified needs.

Under this project, roadside safety issues are identified and prioritized for investigation. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in individual test reports.

1.2 BACKGROUND

The TxDOT Type T101RC Bridge Rail has been widely used as a retrofit for obsolete bridge rails mounted on a deck curb. The T101RC was 27 inches in height and anchored to the curb using four adhesive anchors. The height of the posts and the number of bridge rail elements varied depending on the height of the concrete curb. Based on unsatisfactory crash test performance of rail designs of similar height, TxDOT decided to develop a new retrofit bridge rail system that meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* (1). This new bridge rail system, known as the TxDOT T131RC Bridge Rail, was successfully crash tested in according with *MASH* Test Level 3 (TL-3) and was recommended for implementation on new or retrofit railing applications (2). The implementation of this new bridge rail created a need to develop a transition from standard guardrail to the TxDOT T131RC Bridge Rail.

1.3 OBJECTIVES/SCOPE OF RESEARCH

This project developed a transition for connecting a 31-inch tall W-beam guardrail to the TxDOT T131RC Bridge Rail. The transition was required to meet the impact performance criteria for *MASH* TL-3

CHAPTER 2. SYSTEM DETAILS

2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The TxDOT T131RC Bridge Rail Transition consists of a two nested 12 gage thrie beam sections supported by six W6×8.5 posts spaced at 37½ inches on centers. The nested thrie beams connect to a 10 gage asymmetric transition piece on the upstream end. This asymmetric transition section was connected to approximately 56 ft-3 inches of W-beam guardrail with an ET anchor terminal. The nested thrie beam transition was connected to a 10 gage end shoe on the downstream end. This end shoe was anchored to the end of the T131RC Bridge Rail. The overall length of the test installation was approximately 79 ft-6¾ inches.

The height to the top of the W-beam guardrail and transition was 31 inches above finished grade. The end shoe rail of the nested thrie beam sections were attached to the traffic face of the $HSS6\times6\times1/4$ tubes used for the T131RC Bridge Rail. Two steel fill blocks were located between the $HSS6\times6\times1/4$ tubes and were attached to the T131RC Bridge Rail tubes using two 3 /4-inch diameter \times 20 inches long bolts. These fill blocks were mounted flush to the $HSS6\times6\times1/4$ tubes in the bridge rail. The fill blocks were fabricated using $HSS6\times6\times1/4$ tubes and were tapered on the exposed end in the installation. The thrie beam transition end shoe was attached to the end of the T131RC Bridge Rail using three 78-inch diameter A325 bolts. The thrie beam end shoe was anchored to the end of the rail and fill blocks near the $W6\times15$ anchor post in the concrete curb. This anchor post was anchored within a 12-inch diameter by 30-inch deep concrete footing. This post and footing was constructed within an 80-inch long concrete curb constructed on the end of the T131RC Bridge Rail test installation.

Texas A&M Transportation Institute (TTI) Proving Ground personnel constructed 80 inches of concrete curb for this project. This concrete curb was 12 inches wide and 11 inches high and closely matched the traffic side face of the concrete curb used for the T131RC Bridge Rail. The concrete curb extended approximately 62 inches from the end of the T131RC Bridge Rail curb and tapered 6 inches back from the traffic side over a distance of 18 inches. The width of the curb was 6 inches at the end. The curb was 11 inches in height above grade and 12 inches below grade. A W6×15 end anchor post was located 60 inches from the centerline of the last T131RC Bridge Rail post located on the bridge rail test installation. This anchor post was cast within a 12-inch diameter by 30-inch deep unreinforced concrete footing. This footing was cast monolithically with the concrete curb. The concrete transition curb was not anchored to the concrete curb or deck for the T131RC Bridge Rail installation. Reinforcement in the concrete curb and footing consisted of #3 "U" shaped stirrups spaced approximately 10 inches on centers. Six #3 longitudinal bars were located within these stirrups. Concrete for the concrete curb and footing was specified to be 3600 psi.

Figure 2.1 gives overall details of the TxDOT T131RC Bridge Rail Transition, and a complete set of drawings can be found in Appendix A. Figure 2.2 shows photographs of the completed installation prior to testing.

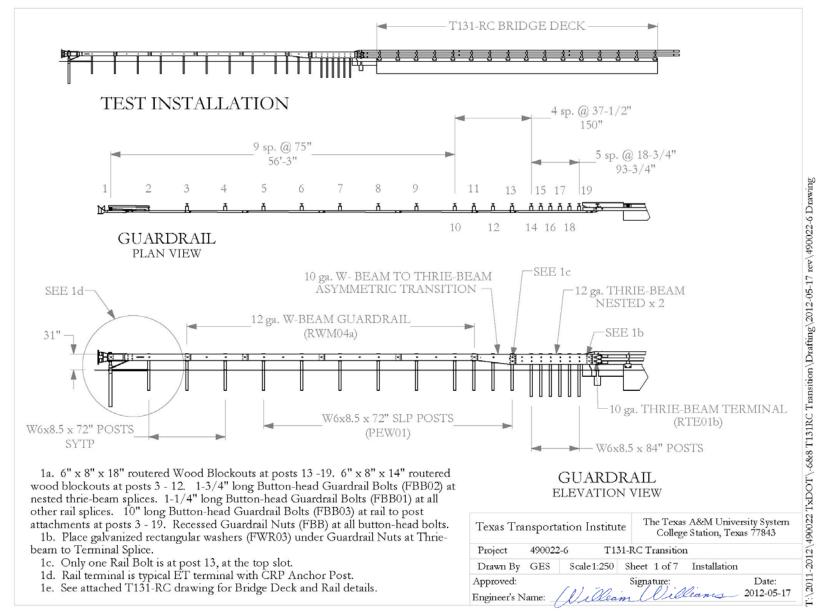


Figure 2.1. Details of the TxDOT T131RC Bridge Rail Transition Installation.

Figure 2.2. TxDOT T131RC Bridge Rail Transition before Testing.

2.2 MATERIAL SPECIFICATIONS

The fill blocks were fabricated using HSS6×6×½ A500 Grade B material with welded A36 plate. All tubular rail elements were fabricated using HSS6×6×½ A500 Grade B material. All reinforcing steel was specified to be ASTM A615 grade 60 material. All hex head bolts connecting the end shoe to the T131RC bridge rail were specified to be A325 structural bolts. All other bolts (button head bolts) used in the installation were A307 grade. Appendix B provides the material certification documents.

Concrete for the concrete curb and footing was specified to be 3600 psi. Compressive strength on the concrete used to construct the curb was measured at 4038 psi on the day of test no. 490022-6 (7 days of age). Compressive strength of the concrete on the day of test no. 490022-8 (11 days of age) was measured at 4436 psi.

2.3 SOIL CONDITIONS

In accordance with Appendix B of *MASH*, soil strength was measured on the day of each crash test. During installation of the TxDOT T131RC Bridge Rail Transition, two standard W6×16 posts were installed in the immediate vicinity of the transition, utilizing the same fill materials and installation procedures followed for the guardrail system and used in the reference tests (see Appendix C, Figure C1).

As the reference tests in Appendix C, Figure C1 show, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation).

On the day of test 490022-6, May 25, 2012, load on the test post at deflections of 5 inches, 10 inches, and 15 inches was 8969 lbf, 9575 lbf, and 9181 lbf, respectively. The strength of the backfill material met minimum requirements (see Appendix C, Figure C2).

On the day of test 490022-8, June 29, 2012, load on the test post at deflections of 5 inches, 10 inches, and 15 inches was 7667 lbf, 7636 lbf, and 7333 lbf, respectively. The strength of the backfill material met minimum requirements.

CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate bridge rail transitions to test level three (TL-3).

MASH Test Designation 3-20: A 2425-lb vehicle impacting the critical impact point (CIP) of the transition at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect a small passenger vehicle.

MASH Test Designation 3-21: A 5000-lb pickup truck impacting the CIP of the transition at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect light trucks and sport utility vehicles.

MASH test 3-20 for a transition section is an optional test to evaluate the occupant risk and post-impact trajectory criteria for all test levels. This test should be conducted if there is reasonable uncertainty regarding the impact performance of the system for impacts with small passenger vehicle. Due to the geometry of the transition design and certain structural components in the transition area, namely the curb, the research team decided that this test was necessary to evaluate the crash performance of the new transition design.

Procedures in *MASH* section 2.3.2.1 were used by the research team to calculate the CIP for each test. The target CIP for *MASH* test 3-20 with the small car was 5.0 ft upstream of centerline of anchor post in concrete curb (post 20). The target CIP for *MASH* test 3-21 with the pickup was 6.8 ft upstream of centerline of anchor post in concrete curb (post 20).

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the TxDOT T131RC Bridge Rail Transition is judged on the basis of three factors: structural adequacy, occupant risk, and post impact vehicle trajectory. Structural adequacy is judged upon the ability of the TxDOT T131RC Bridge Rail Transition to contain and redirect the vehicle, or bring the vehicle to a controlled stop in a predictable manner. Occupant risk criteria evaluate the potential risk of hazard to occupants in the impacting vehicle, and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable. Post-impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria

from Table 5-1 of *MASH* were used to evaluate the crash test reported here and are listed in further detail under the assessment of the crash test.

CHAPTER 4. CRASH TEST PROCEDURES

4.1 TEST FACILITY

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The TTI Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT T131RC Bridge Rail Transition evaluated under this project was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5 ft \times 15 ft blocks nominally 6 inches deep. The apron is over 60 years old, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be unrestrained. The vehicle remained free-wheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site, after which the brakes were activated to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, that measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small size, solid state units designs for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of

the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once recorded, the data are backed up inside the unit by internal batteries should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiating the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The raw data are then processed by the Test Risk Assessment Program (TRAP) software to produce detailed reports of the test results. Each of the TDAS Pro units are returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. Acceleration data are measured with an expanded uncertainty of ±1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

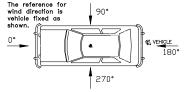
An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 1100C vehicle. The dummy was uninstrumented. According to *MASH*, the use of a dummy in the 2270P vehicle is optional. Researchers did not use a dummy in the test with the 2270P vehicle.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the tests included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

CHAPTER 5. CRASH TEST NO. 490022-6 (MASH 3-20)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS


MASH test 3-20 involves an 1100C vehicle weighing 2425 lb ± 55 lb and impacting the test article at an impact speed of 62.2 mi/h ± 2.5 mi/h and an angle of 25 degrees ± 1.5 degrees. The target impact point was 5.0 ft upstream of centerline of anchor post in concrete curb (post 20). The 2006 Kia Rio used in the test weighed 2423 lb and the actual impact speed and angle were 61.5 mi/h and 25.6 degrees, respectively. The actual impact point was 5.0 ft (60.5 inches) upstream of post 20. Target impact severity (IS) was 55.7 kip-ft, and the actual IS was 57.2 kip-ft.

5.2 **TEST VEHICLE**

A 2006 Kia Rio, shown in Figures 5.1 and 5.2, was used for the crash test. Test inertia weight of the vehicle was 2423 lb, and its gross static weight was 2602 lb. The height to the lower edge of the vehicle bumper was 7.12 inches, and it was 21.00 inches to the upper edge of the bumper. Table D1 in Appendix D give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling just prior to impact.

5.3 WEATHER CONDITIONS

The test was performed on the morning of May 25, 2012. Weather conditions at the time of testing were as follows: wind speed: 14 mi/h; wind direction: 168 degrees with respect to the vehicle (vehicle was traveling in a northwesterly direction), temperature: 86°F, relative humidity: 65 percent.

5.4 **TEST DESCRIPTION**

The 2006 Kia Rio, traveling at an impact speed of 61.5 mi/h, impacted the TxDOT T131RC Bridge Rail Transition 60.5 inches upstream of post 20 at an impact angle of 25.6 degrees. At approximately 0.012 s after impact, the thrie beam guardrail began to deflect toward the field side, and at 0.024 s, the vehicle began to redirect. The concrete transition curb began to deflect toward the field side at 0.029 s, and a crack formed in the concrete bridge rail curb downstream of post 21 at 0.053 s. The concrete bridge rail curb under post 21 began to crack at 0.057 s with some of the pieces of concrete spalling off at 0.220 s. At 0.307 s, the vehicle lost contact with the bridge rail traveling at an exit speed and angle of 44.8 mi/h and 4.4 degrees, respectively. Brakes on the vehicle were not applied, and the vehicle came to rest 180 ft downstream of impact and 21 ft toward traffic lanes. Figures D1 and D2 in Appendix D show sequential photographs of the test period.

Figure 5.1. Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-6.

Figure 5.2. Vehicle before Test No. 490022-6.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show damage to the T131RC Transition and bridge rail. The transition curb deflected toward the field side 0.5 inch. No cracking of the transition curb was noted. The concrete curb around post 21 was cracked significantly, and there was minor cracking around post 22. The vehicle was in contact with the installation 13.3 ft. Vehicle intrusion (formerly working width) was 7.4 inches. Maximum deflection of the thrie beam guardrail during the test was 7.4 inches, and maximum residual deformation after the test was 1.25 inches.

5.6 VEHICLE DAMAGE

Figure 5.5 presents damage to the 1100C vehicle. The left strut and strut tower were deformed. The front bumper, grill, hood, radiator, radiator support, left front fender, left front tire and wheel rim, left front door, left rear door, left rear quarter panel were deformed. The windshield sustained stress cracks from the left lower corner. Maximum crush to the exterior of the vehicle was 12.0 inches in the front plane in the left front corner at bumper height. Maximum occupant compartment deformation was 2.5 inches in the left front door near occupant hip height. The floor pan and firewall were also deformed. Tables D2 and D3 in Appendix D present the exterior crush profile and occupant compartment deformations.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 21.0 ft/s at 0.080 s, the highest 0.010-s occupant ridedown acceleration was 6.1 Gs from 0.083 to 0.093 s, and the maximum 0.050-s average acceleration was –10.8 Gs between 0.023 and 0.073 s. In the lateral direction, the occupant impact velocity was 27.6 ft/s at 0.080 s, the highest 0.010-s occupant ridedown acceleration was 6.3 Gs from 0.118 to 0.128 s, and the maximum 0.050-s average was 15.3 Gs between 0.025 and 0.075 s. Theoretical Head Impact Velocity (THIV) was 37.7 km/h or 10.5 m/s at 0.078 s; Post-Impact Head Decelerations (PHD) was 6.9 Gs between 0.117 and 0.127 s; and Acceleration Severity Index (ASI) was 1.92 between 0.025 and 0.075 s. Figure 5.6 summarizes these data and other pertinent information from the test. Vehicle angular displacements and accelerations versus time traces are presented in Appendix D, Figures D3 through D9.

Figure 5.3. Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-6.

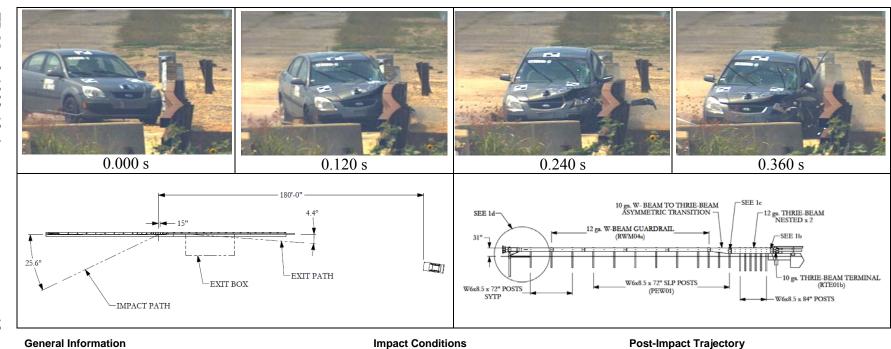


Figure 5.4. TxDOT T131RC Bridge Rail Transition after Test No. 490022-6.

Figure 5.5. Vehicle after Test No. 490022-6.

General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	. Texas A&M Transportation Institute (TTI)	Speed61.5 mi/h	Stopping Distance 180 ft dwnstrm
Test Standard Test No	MASH Test 3-20	Angle25.6 degrees	21 ft twd traffic
TTI Test No	. 49002-6	Location/Orientation5 ft upstrm post 20	Vehicle Stability
Test Date	. 2012-05-25	Exit Conditions	Maximum Yaw Angle 33 degrees
Test Article		Speed44.8 mi/h	Maximum Pitch Angle 6 degrees
Туре	Transition	Angle4.4 degrees	Maximum Roll Angle 5 degrees
Name	TxDOT T131RC	Occupant Risk Values	Vehicle Snagging No
Installation Length	. 76.5 ft	Impact Velocity	Vehicle Pocketing No
Material or Key Elements	W-beam to thrie beam asymmetric	Longitudinal21.0 ft/s	Test Article Deflections
	transition to nested thrie beam on	Lateral27.6 ft/s	Dynamic 7.4 inches
	W6x8.5 x 84-inch posts	Ridedown Accelerations	Permanent 1.25 inches
Soil Type and Condition	Standard soil, dry	Longitudinal6.1 G	Vehicle Penetration 21.0 inches
Test Vehicle		Lateral6.3 G	Vehicle Damage
Type/Designation	. 1100C	THIV37.7 km/h	VDS 11LFQ5
Make and Model	. 2006 Kia Rio	PHD6.9 G	CDC 11FLEW4
Curb	. 2489 lb	ASI1.92	Max. Exterior Deformation 12.0 inches
Test Inertial	. 2423 lb	Max. 0.050-s Average	OCDILF0000010
Dummy	. 179 lb	Longitudinal10.8 G	Max. Occupant Compartment
Gross Static	. 2602 lb	Lateral15.3 G	Deformation 2.5 inches
		Vertical1.7 G	

Figure 5.6. Summary of Results for MASH Test 3-20 on the TxDOT T131RC Bridge Rail Transition.

5.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

5.8.1 Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.

Results: The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 7.4 inches. (PASS)

5.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

Results: No detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present hazard to others. (PASS)

Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height. (PASS)

F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.

Results: The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 degrees and 6 degrees, respectively. (PASS)

H. Occupant impact velocities should satisfy the following:

<u>Longitudinal and Lateral Occupant Impact Velocity</u>

<u>Preferred</u>

30 ft/s

Maximum

40 ft/s

Results: Longitudinal occupant impact velocity was 21.0 ft/s, and lateral occupant impact velocity was 27.6 ft/s. (PASS)

I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations

<u>Preferred</u> <u>Maximum</u> 15.0 Gs 20.49 Gs

Results: Longitudinal occupant ridedown acceleration was 6.1 G, and lateral occupant ridedown acceleration was 6.3 G. (PASS)

5.8.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

Result: The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation. (PASS)

CHAPTER 6. CRASH TEST 490022-8 (*MASH* 3-21)

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 100 lb and impacting the test article at an impact speed of 62.2 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The target impact point was 6.8 ft upstream of centerline of anchor post in concrete curb (post 20). The 2008 Dodge Ram 1500 pickup truck used in the test weighed 5015 lb and the actual impact speed and angle were 62.7 mi/h and 25.1 degrees, respectively. The actual impact point was 7.2 ft upstream of post 20. Target IS was 115.1 kip-ft, and actual IS was 118.6 kip-ft.

6.2 TEST VEHICLE

A 2008 Dodge Ram 1500 pickup truck, shown in Figures 6.1 and 6.2, was used for the crash test. Test inertia weight of the vehicle was 5015 lb, and its gross static weight was 5015 lb. The height to the lower edge of the vehicle bumper was 13.75 inches, and it was 25.38 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 29.0 inches. Tables E1 and E2 in Appendix E give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be unrestrained just prior to impact.

6.3 WEATHER CONDITIONS

The test was performed on the morning of June 29, 2012. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 180 degrees with respect to the vehicle (vehicle was traveling in a northwesterly direction); temperature: 90°F, relative humidity: 63 percent.

270°

6.4 TEST DESCRIPTION

The 2008 Dodge Ram 1500 pickup truck, traveling at an impact speed of 62.7 mi/h, impacted the TxDOT T131RC Bridge Rail Transition 7.2 ft upstream of post 20 at an impact angle of 25.1 degrees. At approximately 0.024 s, the thrie beam guardrail began to deflect toward the field side, and at 0.050 s, the vehicle began to redirect. The transition curb began to deflect toward the field side at 0.127 s, and the rear of the vehicle contacted the transition at 0.209 s. At 0.363 s, the vehicle lost contact with the installation traveling at an exit speed and angle of 47.1 mi/h and 5.6 degrees, respectively. Brakes on the vehicle were applied 1.8 s after impact, and the vehicle subsequently came to rest 202 ft downstream of impact with the left side of the vehicle aligned with the traffic face of the bridge rail. Figures E1 and E2 in Appendix E show sequential photographs of the test period.

Figure 6.1. Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-8.

Figure 6.2. Vehicle before Test No. 490022-8.

6.5 DAMAGE TO TEST INSTALLATION

Figure 6.3 and 6.4 show damage to the T131RC Transition and the bridge rail. Post 14 was deflected toward the field side 0.25 inch, and post 15 was deflected toward the field side 0.5 inch. The soil around post 16 and 17 was disturbed. Post 18 was deflected toward the field side 1.38 inches, and maximum residual deformation at post 18 was 1.0 inch. The soil around post 19 was disturbed. The transition curb deflected toward the field side 1.5 inches. The transition curb was not cracked, but was marred with tire marks. Significant cracking of the bridge rail curb occurred at post 21 with slight damage at post 22. Length of contact of the vehicle with the installation was 15.3 ft. Vehicle intrusion (formerly working width) was 15.9 inches. Maximum dynamic deflection during the test was 8.37 inches, and maximum permanent residual deformation was 1.0 inch.

6.6 VEHICLE DAMAGE

Figure 6.5 presents damage to the 2270P vehicle. The left upper ball joint and left front upper and lower A-arms were deformed and the rear axle was broken. The front bumper, grill, hood, radiator, fan, water pump, left front fender, left front tire and wheel rim, left front door, left rear door, left rear exterior bed, left rear tire and wheel rim and rear bumper were deformed. The windshield sustained stress cracks from the right lower corner due to impact with a secondary barrier. Maximum crush to the exterior of the vehicle was not attainable due to the secondary impact. Maximum occupant compartment deformation was 0.25 inch in the left front door near occupant hip height. The floor pan and firewall were also deformed. Figure 6.6 shows photographs of the interior of the vehicle. Tables E3 and E4 in Appendix E present the exterior crush profile and occupant compartment deformations.

6.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 18.4 ft/s at 0.092 s, the highest 0.010-s occupant ridedown acceleration was 6.6 Gs from 0.120 to 0.130 s, and the maximum 0.050-s average acceleration was -8.0 Gs between 0.040 and 0.090 s. In the lateral direction, the occupant impact velocity was 23.6 ft/s at 0.092 s, the highest 0.010-s occupant ridedown acceleration was 9.4 Gs from 0.221 to 0.231 s, and the maximum 0.050-s average was 12.4 Gs between 0.030 and 0.080 s. Theoretical Head Impact Velocity (THIV) was 32.4 km/h or 9.0 m/s at 0.090 s; Post-Impact Head Decelerations (PHD) was 9.5 Gs between 0.221 and 0.231 s; and Acceleration Severity Index (ASI) was 1.52 between 0.030 and 0.080 s. Figure 6.7 summarizes these data and other pertinent information from the test. Vehicle angular displacements and accelerations versus time traces are presented in Appendix E, Figures E2 through E8.

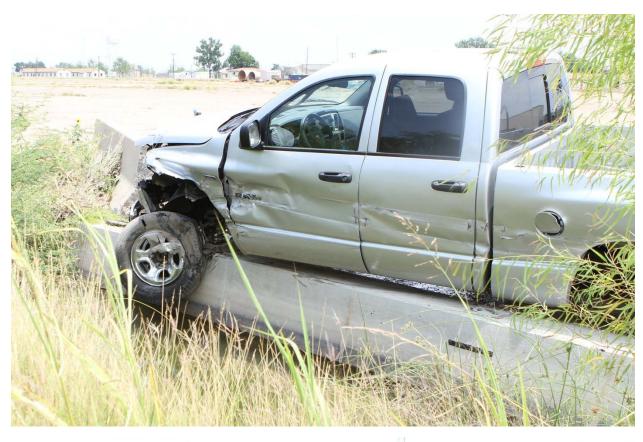
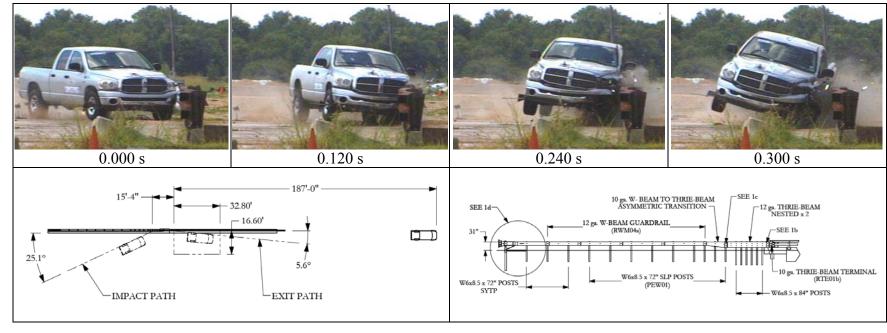


Figure 6.3. Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-8.

Figure 6.4. TxDOT T131RC Bridge Rail Transition after Test No. 490022-8.

 $Figure \ 6.5. \ Vehicle \ after \ Test \ No. \ 490022-8.$



Before Test

After Test

Figure 6.6. Interior of Vehicle for Test No. 490022-8.

General Information		Impact Conditions	Post-Impact Trajectory
Test Agency	. Texas A&M Transportation Institute	Speed62.7 mi/h	Stopping Distance 202 ft dwnstrm
Test Standard Test No	. (TTI)	Angle25.1 degrees	Left side w/face
TTI Test No	. MASH Test 3-21	Location/Orientation7.2 ft upstrm post 20	Vehicle Stability
Test Date	. 490022-8	Exit Conditions	Maximum Yaw Angle 30 degrees
Test Article	2012-07-29	Speed47.1 mi/h	Maximum Pitch Angle 8 degrees
Туре		Angle5.6 degrees	Maximum Roll Angle21 degrees
Name	. Transition	Occupant Risk Values	Vehicle Snagging No
Installation Length	. TxDOT T131RC Bridge Rail Transition	Impact Velocity	Vehicle Pocketing No
Material or Key Elements	. 76.5 ft	Longitudinal18.4 ft/s	Test Article Deflections
	W-beam to thrie beam asymmetric	Lateral23.6 ft/s	Dynamic 8.4 inches
	transition to nested thrie beam on	Ridedown Accelerations	Permanent 1.0 inch
Soil Type and Condition	. W6x8.5 x 84-inch posts	Longitudinal6.6 G	Vehicle Penetration 15.9 inches
Test Vehicle	Standard soil, dry	Lateral9.4 G	Vehicle Damage
Type/Designation		THIV32.4 km/h	VDS 11LFQ4
Make and Model	. 2270P	PHD9.5 G	CDC 11FLEW3
Curb	. 2008 Dodge Ram 1500 Pickup	ASI1.52	Max. Exterior Deformation Not obtainable
Test Inertial	. 5022 lb	Max. 0.050-s Average	OCDILF0000000
Dummy	. 5015 lb	Longitudinal8.0 G	Max. Occupant Compartment
Gross Static	. No dummy	Lateral12.4 G	Deformation 0.25 inch
	5015 lb	Vertical2.8 G	

Figure 6.7. Summary of Results for MASH Test 3-21 on the TxDOT T131RC Bridge Rail Transition.

6.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

6.8.1 Structural Adequacy

A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.

Results: The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. (PASS)

6.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

Results: No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others. (PASS)

Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height. (PASS)

F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.

Results: The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 degrees and 8 degrees, respectively. (PASS)

I. Occupant impact velocities should satisfy the following:

Longitudinal and Lateral Occupant Impact Velocity

Preferred
Maximum

30 ft/s
40 ft/s

Results: Longitudinal occupant impact velocity was 18.4 ft/s, and lateral occupant impact velocity was 23.6 ft/s. (PASS)

I. Occupant ridedown accelerations should satisfy the following:

Longitudinal and Lateral Occupant Ridedown Accelerations

<u>Preferred</u> <u>Maximum</u> 15.0 Gs 20.49 Gs

Results: Longitudinal ridedown acceleration was 6.6 G, and lateral

ridedown acceleration was 9.4 G. (PASS)

6.8.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

Result: The 22270P vehicle crossed the exit box within the limits specified in

MASH. (PASS)

CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1 SUMMARY OF CRASH TEST RESULTS

7.1.1 Crash Test No. 490022-6 (*MASH* Test 3-20)

The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 7.4 inches. No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 degrees and 6 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation, which was within the *MASH* recommendation

7.1.2 Crash Test No. 490022-8 (*MASH* Test 3-21)

The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 degrees and 8 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 22270P vehicle crossed the exit box within the limits specified in *MASH*.

7.2 CONCLUSIONS

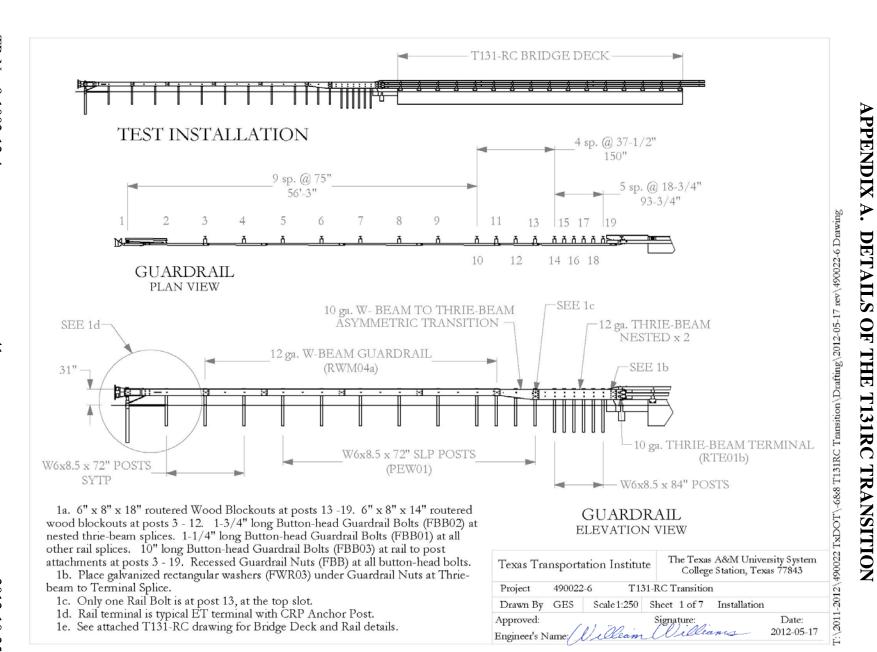
The TxDOT T131RC Bridge Rail Transition performed acceptably as a *MASH* TL-3 transitions, as shown in Tables 7.1 and 7.2.

Table 7.1. Performance Evaluation Summary for MASH Test 3-20 on the TxDOT T131RC Bridge Rail Transition.

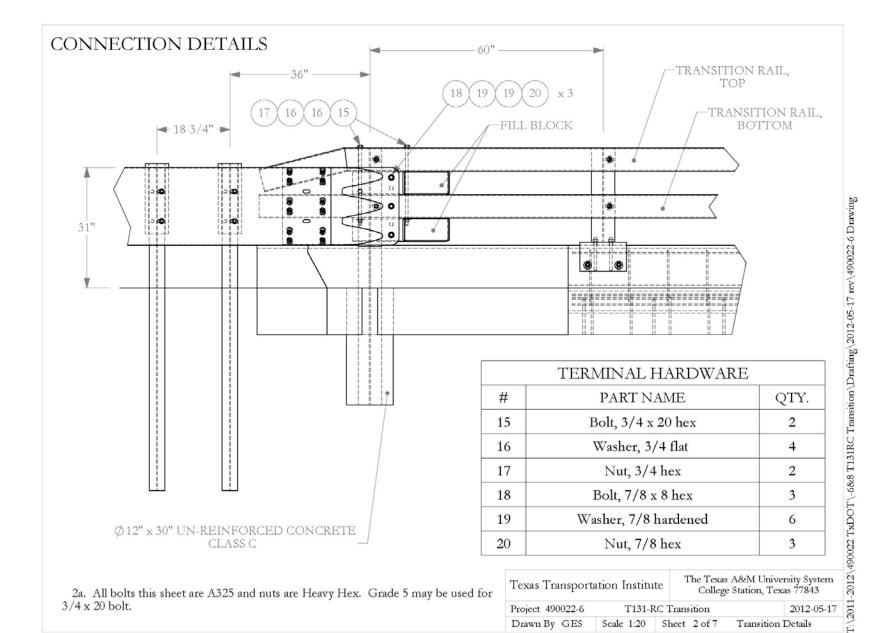
Tes	t Agency: Texas A&M Transportation Institute	Test No.: 490022-6	Test Date: 201205-25
	MASH Test 3-20 Evaluation Criteria	Test Results	Assessment
Stru	uctural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 7.4 inches.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 and 6 degrees, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 21.0 ft/s, and lateral occupant impact velocity was 27.6 ft/s	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Longitudinal occupant ridedown acceleration was 6.1 G, and lateral occupant ridedown acceleration was 6.3 G.	Pass
Veł	For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).	The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation.	Pass

Table 7.2. Performance Evaluation Summary for MASH Test 3-21 on the TxDOT T131RC Bridge Rail Transition.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 490022-8	est Date: 2012-06-29
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches.	Pass
Occ	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 and 8 degrees, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 18.4 ft/s, and lateral occupant impact velocity was 23.6 ft/s.	Pass
I.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Longitudinal ridedown acceleration was 6.6 G, and lateral ridedown acceleration was 9.4 G.	Pass
Vel	nicle Trajectory For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).	The 22270P vehicle crossed the exit box within the limits specified in <i>MASH</i> .	Pass


CHAPTER 8. IMPLEMENTATION STATEMENT

TTI researchers recently designed and successfully crash tested the TxDOT Type 131RC Bridge Rail. The T131RC Bridge Rail consists of two HSS6×6×½ steel tubes supported by W6×15 steel posts spaced on 5 ft on centers. The posts were anchored to an 11-inch high concrete curb. The curb was 10 inches wide at the base and 8 inches wide at the top. The posts were anchored to the concrete curb using ¾-inch diameter adhesive anchors. The base plate for the T131RC post design was bent to conform to the shape of the concrete curb. The TxDOT T131RC Bridge Rail tested previously met all the strength and safety performance criteria of *MASH*.

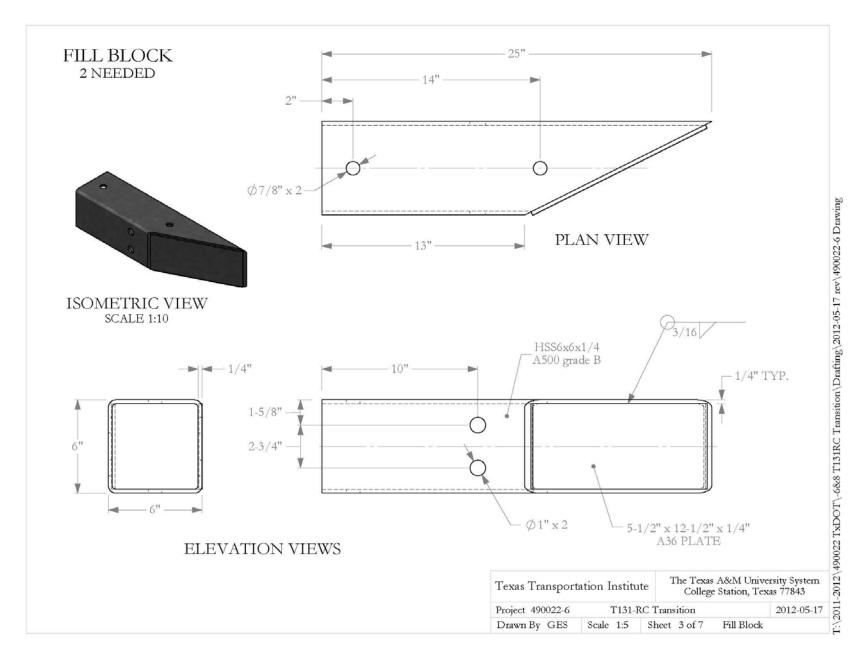

The purpose of this portion of the project was to develop a transition for connecting a 31-inch tall W-beam approach guardrail to the new T131RC Bridge Rail. The transition designed and tested for this project met all *MASH* safety performance criteria for a TL-3 transition. The transition is recommended for implementation on all projects using the new T131RC Bridge Rail design.

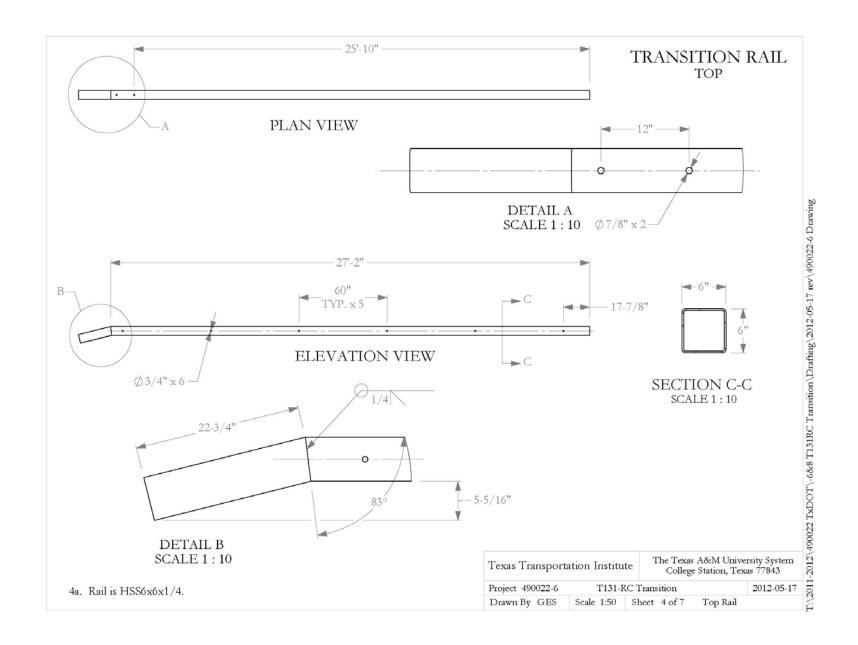
REFERENCES

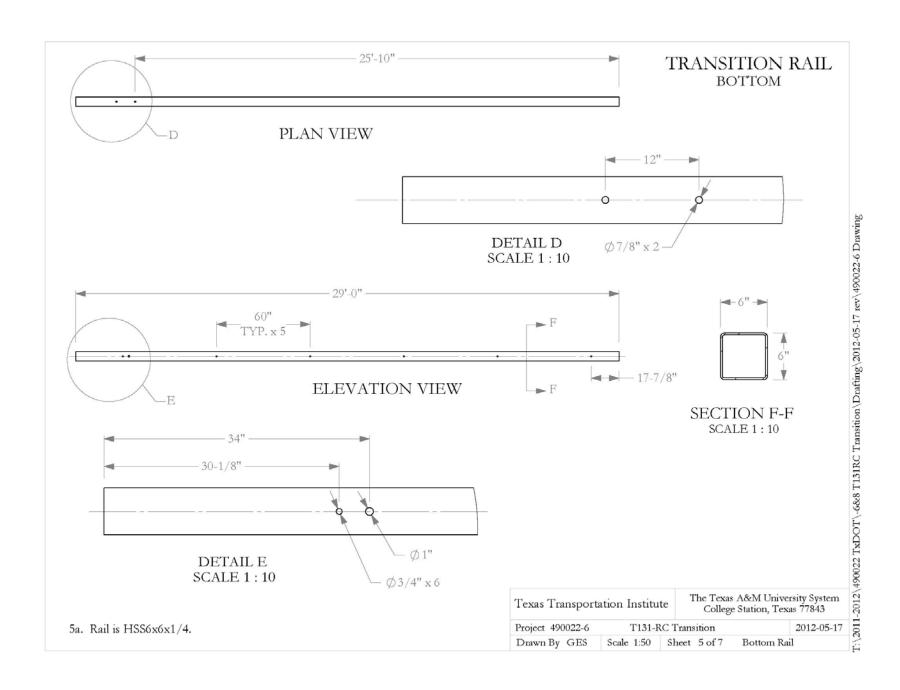
- 1. AASHTO, *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- W. F. Williams, R. P. Bligh, and W. L. Menges, *MASH Test 3-11 on the T131RC Bridge Rail*, Test Report No. 9-1002-1, Texas Transportation Institute, The Texas A&M University System, College Station, TX, June 2012.

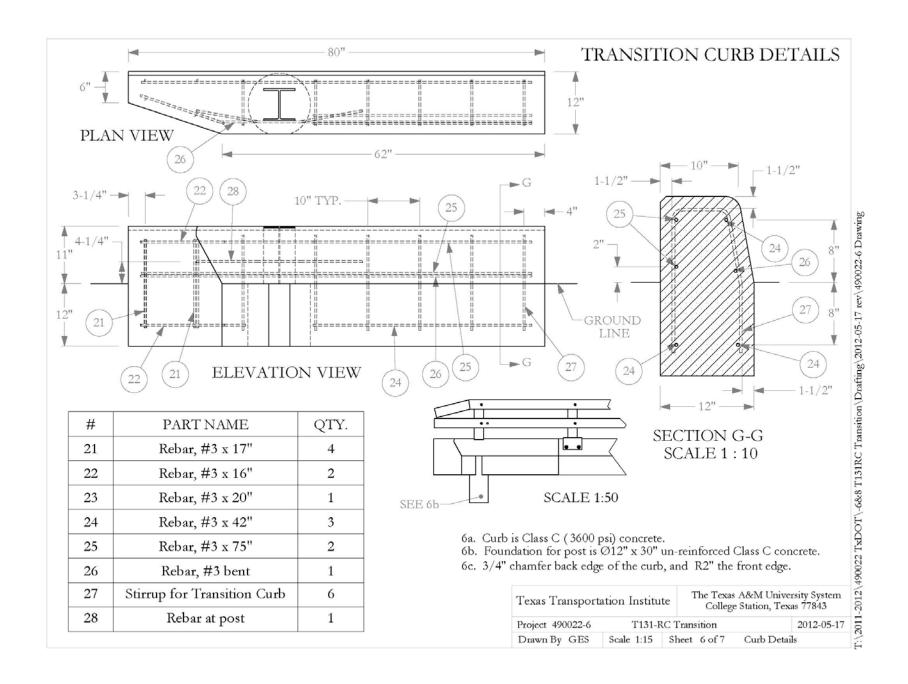
 $3/4 \times 20$ bolt.

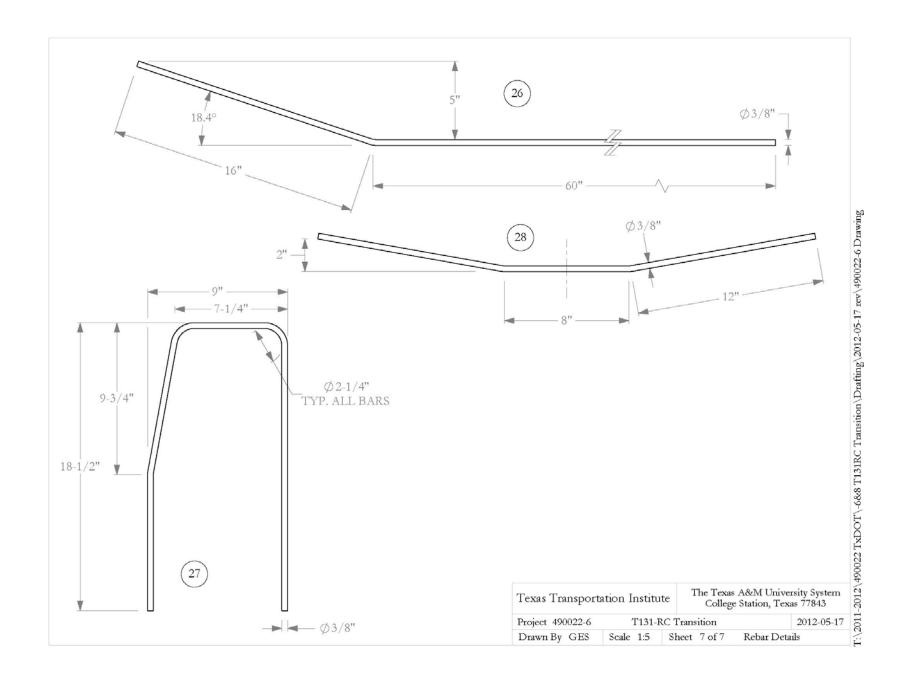
Project 490022-6


Drawn By GES


T131-RC Transition


Sheet 2 of 7


Transition Details

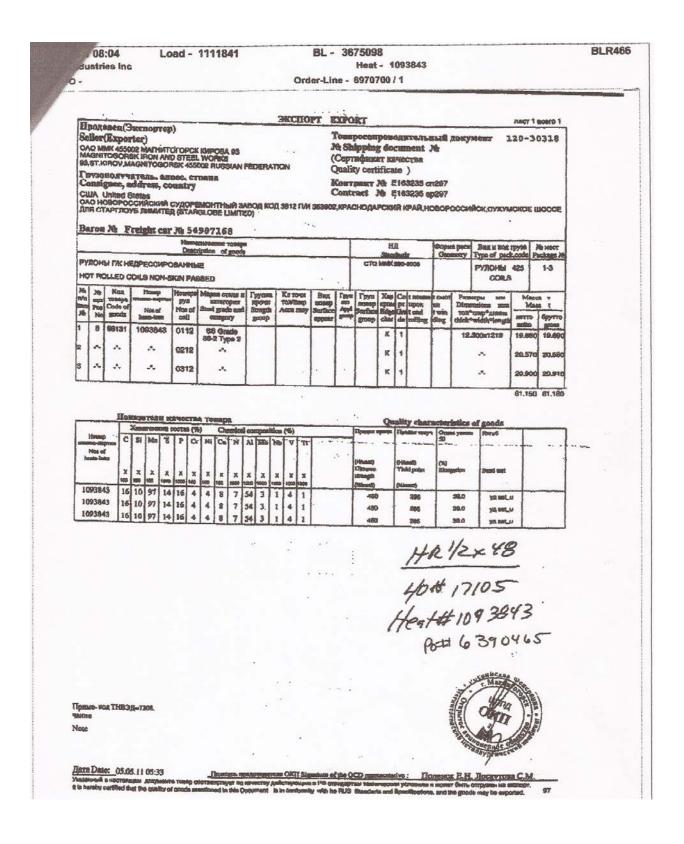

Scale 1:20

APPENDIX B. CERTIFICATION DOCUMENTATION

MATERIAL USED

TEST NUMBER 490022-6

TEST NAME T131RC Transition


DATE 2012-05-25

DATE RECEIVED	ITEM NUMBER	DESCRIPTION	SUPPLIER	HEAT#	NOTE
2012-01-26*	Parts-15	Guardrail Parts	Brazos Industries	see file	1
2012-01-12	Rebar 03-06	3/8" x 20' grd 60	CMC-Sheplers	3028608	1
2012-01-12	Rebar 04-25	1/2" x 20' gr 60	CMC-Sheplers	see file	1
2012-05-02	Parts-20	Guardrail Parts	Trinity	see file	2

These parts were used on the Bridge Deck for test 490022-1. These parts were used for the Transition for this test.

²

BLR466			Macon exper	DEGALL OF	***************************************			CCDITE							La tha	
		0	DOCOR SIEEE - P.C. Box 2259 Mt. Pleasant, Phone: (843)	S.C. 29464				CERTIFI.	EO KILL T	- 177	r	olled to	produced a fully b	by Nacor-	CURED IN 1 Berkeles & I fine grai	re caso a la praccio
		Page 2		SAMASCO CORTO 500 COLONIAL SUITE 500 RUSWELL, CA		¥*.		<u>Shi</u>	5 76: BEB: \$07: P.O	SCO H 1009 BDX 1	4 (B000 TH			Customer	R. 1 482	. 49
			SPICIFICATIONS AREBID : MO ASIM : ASSI CSA : S40.2	270-56-05 2-11:035-08/3							1 and 8379.	p:illes.¢	Manual Re	V \$36.		
375		L -HUGER	Description	Heath Grade(s) Test	Theld/ Ionsilo Ratio		Tensils (VS1) (MPa)		KINIEN CI CI	Me Me Bo Ti	=========	SEEDEDDEE S B XXXXXX	Sý N	Cr.	A EXERT	CEI CEZ Por
7534 Heat - 1115375	7073338 / 1	R STEEL	W12x13 040' 70.03' W310K29.3 012:1920#	2113512 4992-11	.84	60608 819 90108 919	72490 439 71200 436	25.86	.[7 .E5	.95 .01 .902 ece(s)	.0132 .9132 Custoser	.033 .6002 .0032	.21 .004 .0051	22	4.34 Invs	,25 ,2897 ,1397 0
- 3677534 Heat		: NUCOR	WERLS 040' 00.03' W153K22.5 912.1920#	1115375 9992-11	.84	57508 339 57598 596	63830 474 69530 473	27.79 25.15	.17 .63	.83 .91 .902 ece(5)	Customer	.024 .0032 PO: 6464	1 .19 1 .804 1 .9056	1 .15 .02E	1.78 Inv#	.23 .2711 .1321
펌	Order-Line	From:	012.1920# 040, 30.93. 080, 30.93.	2115013 #992-11	.60	58608 939 57000 407	73310 573 73310 515	23.58	.67 .13	1.16 .92 .902 sco(s)	. DR9 . OU94 Customor	.030 .0002 Par 6687	24 .804 .8071	1 .829	00. 01.4	.23 .3339 .1509
			WERS: 040' 10.33' W203845.1 D12.1320m	21149EL 8982-11	.61	36600 390 37530 396	73330 465 73330 485	25.16 25.86	.67 .63	1.06 .01 .002 eco(s)	.0673 .0673 Costoner	.029 .6002 90: 6687	26 004 0033	16.836	1.86 1.80	.27 .31 % .1025
1130978		2	Elongation bas Cl = 29.(104) Pcm = Cl(51/30	Fed on 8' (20	.39cs) ge r+1.6951-	nge le:	ngta. 'N -(7.29¢u	o Wald WWi)-(9	kopair' wa (108189)-3	s perf	ormed. Eq. (21	tree and = C#(Mn/6	no contac)+(Cx+Mc	T with Ho	drring ma Mi-cu /:5 C5 /5 (()	na čac raze
Load - 11		EQ.	I hereby certi correct. All t massifacturer a when designate	est results ue in compli	and opera ance with	tions mater	performe Lal spec	d by chi idicati	mararial ons, and	-	Bauco R. Metalling					
12-28-2011 12:03 Brazos Industries Inc	-0	30 12-09 To:														
12-28-2 Brazos	Cust. PO	23:3														

01-02-2012 04:10 Load - 1132336 BLR466 BL - 3677708 Heat - 762367 Brazos Industries Inc Order-Line - 7073336 / 5 Cust. PO -Ø1004/005 12/22/2011 THU 18:59 FAX 519 738 5061 atlastube shipping Artes Tube Canada ULC 200 Clark St. Harrow, Omsrie, Canada NOR 100 Tel: 519-738-3541 Fox: 519-738-3537 DDD JMC STEEL GROUP MATERIAL TEST REPORT Sold to Shipped to NAMASCO CORPORATION Steel Warehousing Corporati 500 COLONIAL CENTER PR ROSWELL GA 30076 USA NAMASCO SOUTH WEST SOUTH LOOP 4, P.O. BOX BUDA TX 78715-0367 USA Material: 5.0x5.0x250x48'0"0(4x2). Material No: 500502504800 Melted in: Canada Salas order: 688743 Mn P S Si Al Cu Co Mo Ni Cr V TI B N Bundle No PCs Yield Tensile Etn.2in Certification CE: 0.36 M101100675 8 063850 Pai 078200 Pai 32.6 % ASTM A500-10A GRADE B&C Material Note: Sales Or.Note: Material: 6.0x6.0x250x40*0*0(3x3). Material No: 600602504000 Mado in: Canada Welted in: Canada Punchase Order: 6409841 Cust Material #: T814SQA5000480 Sales order: 689536 Sì Al Cu Ch Mo Ni Cr V Ti B
 Bundle No
 PCs
 Vield
 Tensite
 Eln.2in

 M101096889
 9
 054900 Psl
 067270 Psi
 34.0 %
 Eln.2in Certification ASTM A500-10A GRADE B&C Material: 8.0x4.0x250x40*0*0(2x4). Material No: 800402504000 Made in: Canada Melted In: Canada Purchase Order: 6409841 Cust Material #: T8414RECTA5000480 Sales order: 889538 Heat No C Ma P S SI Al Cu Ch Me Na 762777 0.180 0.790 0.008 0.008 0.013 0.066 0.049 0.005 0.005 0.015 0.035 0.002 0.000 0.000 0.000 Bundio No PCs Yield Tonsils Ein.2In 8101096343 8 060430 Psi 075020 Psi 35.5 % Certification CE: 0.33 ASTM A500-10A GRADE 8&C Sales Or. Note: Authorized by Quasity Ansurance: M. Whell.
The results reported an about The results reported on this report represent the actual attributes of the meterial furnished and indicate full compliance with all applicable specification and contract requirements. Pago : 2 Of 3 Metals Service Center institute Institute

				10.22	h	haidh a m	1 100	.O. NI	whom /	-		Part i	Nesembre	н		Cert	ifica:	te Numb	er	Date		
		Load Number	0000000004	-	inder A	WEADOL.	manne	361481	moer			ratt	TONEST			L335	****			08/09/	5077 7	3:46
		Crade	00000004	25125 16-1015			(20	P. Contraction of the Contractio		Custo	Wer'i										
		Order Besc	IN x 96.000	DM x 242.000 fon: 36-08 MBD MM/		36-03/A70	19-36-1	.0			Shrip '	CO Bud			Negline dywnes dron	~~~					*******	
		Stripped Item	Heat/Slab Rusber	Certifite By	ed C	Mn	P	5	Si	Ca	₩i.	(C)r	Ma	Cb	V	Aĭ	Ti	K2	В	Ca	511	CE Q.
0		1.00930	8107759-01	6e4 810775	0,1	8 0.89	0.012	0.Q0B	0.06	0.16	0.08	0.09	0.02	-	-	0.037		0.008	0.0001	0.0027	0.008	-
178		1H0093E	8107759-03	Mas BIU775	0.1	8 0.89	0.012	-	0.06	0.16	0.06	0.09		1 0.000	and the same of the same of	0.037		800.0	0.0001	0.0027	0.008	moure
B1U7759		1H0095B	8107759-02	*** B10775	0.1	8 0.89	G. 023	0.008	0.06	6.15	0.06	0.09	0.02	10.000	10.001	10.uxr	8.001.	0.000	17-10001	10.002	Torons	سند
90		Shipped	Certified	Heat	Yield	Tensile	Y/T	ELONO	ATTOM S	% Ben	d Hai	16	Cha	copy Inc	3075 (}		Shea			Te
Hoat -		Item	By.	Number	ƙsi	ksi	- %	2"	8"	OK	Н	51	Ze mm	1	2	3	Avg	1	2	3	Avg	Te
Ho 710		IH00830	S1H00939TT	8107759 ***	46.7	67.9	8.89	38.6							_							
3 .		1H00939	Z110093MTT	8£87759 ***	44.5	63.8	70-4	40.1	_	-	-							_				-
Order-Line		1000935	\$1#0093FTT	8107759 ***	46.7	67.9	68.A	38.6	-	1	-	-										-
로		1H0093E	\$1H0093MTT	B107759 ***	44.9	63.8	70.4	40.1	-				***************************************					-				
rd		1800958	S1H009ZFTT	8107759 ***	49.0	6K.7	73.3	36.6	-	-	-	-+-							-			
0		LH00958	S1HD094FTT	B197759 ***	46.B	68.3 G3.3	73.9	40.9		+	-	-							1			
		EH90958	\$1H0092HTT	8107759 *AA	45.B	64.0	71.8	39.3	-	-	-	1										
		1H00953	27U0Gac431	BELLAIDE	74.10	1 0110	1 1210		1													
1-05-2012 06:06 Loda - 1153417 razos industries inc ust. PO -	· ·	Moretry has manufacturin Manufactured ISO 9001:20	g process. Carifi d to a buly killed fir 08 Registered, PE	ot with this producted in accordance to no grain practice.	ish EN S * Product	0204 3.1. N ed from Col	SO WIDED IN	ocess no	Linas esty bean pe	mercur	obeen v	sed by t	he	Vie here	by ceriliy	that live	Sp	The spool	above participation of the par	500	Size faust	s rec

Porteous Fastener Company

Product Information Sheet

Carriage Bolt, Inch Series, Grade A

- > PFC Product Category: 00100
- Typical Material: Low Carbon Steel
- Material and Mechanical Properties: Purchased to meet ASTM A307 Grade A.
- > Dimensions: ASME B18.5, Round Head Square Neck Bolt, Rolled Threads
 - > Full thread to 6 inches in length.
 - Undersize body and 6 inches of threads on lengths over 6 to 12 inches.
 6 inches threads and full size body on lengths over 12 inches.
- > Zinc Plating: Purchased to meet ASTW-1941 FeZna
- discount of the second second > Hot-Dip Galvanized: Purchase
- > Typical Hardress:
- > Tensile Strength 60,000 PSI Minimum FIRST CLASS SCRUBTE

Tensile Strength - NC Threads ASTM A307 Grade A								
Size	PSI	Pounds						
1/4-20	60,000	1900						
5/16-18	60,000	3100						
3/8-16	60,000	4650						
7/16-14	60,000	6,350						
1/2-13	60,000	8,500						
9/16-12	60,000	11,000						
5/8-11	60,000	13,550						
3/4-10	60,000	20,050						
7/8-9	60,000	27,700						
1-8	60,000	36,350						

Len	gth Toler	ances - C	arriage B	olts						
	Nominal Size									
Nominal Length	#10 to 3/8	7/16 & 1/2	9/16 to 3/4	7/8 to 1						
		Tolerance	on Length							
Up to & Incl 1"	+0.02/-0.03	+0.02/-0.03	+0.02/-0.03							
Over 1" to 2 1/2", incl.	+0.02/-0.04	+0.04/-0.05	+0.06/-0.08	+0.08/-0.10						
Over 2 1/2" to 4", incl.	+0.04/-0.06	+0.06/-0.08	+0.08/-0.10	+0.10/-0.14						
Over 4" to 6", incl.	+0.06/-0.10	+0.08/-0.10	+0.10/-0.10	+0.12/-0.16						
Over 5"	+0.10/-0.18	+0.12/-0.18	+0.14/-0.18	+0.18/-0.20						

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of document creation. However, Porteous Fastener Company is not responsible for any claim traceable to any errors (typographical or otherwise) as contained herein. Porteous Fastener Company makes no warranties as to the accuracy of this information.

SOLD ADELPHIA METALS I LLC 411 MAIN ST E TO: NEW PRAGUE, MN 56071-

MUCOR

NUCOR CORPORATION NUCOR STEEL TEXAS

CERTIFIED MILL TEST REPORT

Ship from:

Nucor Steel - Texas 8812 Hwy 79 W JEWETT, TX 75846 800-527-6445

Date: 26-Oct-2011 B.L. Number: 586989 Load Number: 195932

NBMG-08 March 9, 2011

Page: 1

ADELPHIA METALS-CUST PU N/A SHIP

TO: JEWETT, TX 75846-

Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative.

-			PHY	STS		CHEMICAL TESTS							
HEAT NUM. *	DESCRIPTION	YIELD P.S.I.	TENSILE P.S.I.	ELONG % IN 8"	BEND	WT% DEF	CNi	Mn Cr	P Mo	SV	Si Cb	Cu Sn	C.E.
PO# =>	801746												
JW1110880201	Nucor Steel - Texas	70,000	110,500	13.0%			.42	1.02	.016	.024	.12	.33	.62
	13/#4 Rebar 20'	483MP	a 762MPa	a			.13	.15	.039	.003	.001		
	A615M Gr 420 (Gr60)												
1	ASTM A615/A615M-09b GR 60[420]												
	AASHTO M31-07												
PO# =>	801746												;
JW1110880301	Nucor Steel - Texas	70,700	108,900	12.0%			.42	.98	.019	.044	.14	.32	.61 -
	13/#4 Rebar 20'	487MP	a 751MPa	à			.14	.17	.042	.003	.001		
	A615M Gr 420 (Gr60)												
	ASTM A615/A615M-09b GR 60[420]												
	AASHTO M31-07												

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed above and that it satisfies those requirements.

1.) Weld repair was not performed on this material.

2.) Melted and Manufactured in the United States.

3.) Mercury, Radium, or Alpha source materials in any form

QUALITY ASSURANCE:

Nathan Stewart

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Daniel J. Schacht

Quality Assurance Manager

HEAT NO.:3028608 SECTION: REBAR 10MM (#3) 20'0" 420/60 GRADE: ASTM A615-09b Gr 420/60 ROLL DATE: 11/20/2011 MELT DATE: 11/19/2011	S O L D T O	O			CMC Construction Svcs Collection 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	ge Stati	ti Delivery#: 80634703 BOL#: 70224264 CUST PO#: 5390AB CUST P/N: DLVRY LBS / HEAT: 16848.000 LB DLVRY PCS / HEAT: 2240 EA		
Characteristic	Value		Charac	teris	tic Value		Characteristic	Value	
	0.45%								
	0.81%		,		,				
	0.0129 0.0379	-			*				
	0.037 ₇ 0.17%								
	0.34%								
Cr	0.17%								
Ni	0.16%								
	0.0599	-							
	0.0029								
	0.0019								
	0.0139 0.0029								
Yield Strength test 1	70.6ks	i							
	108.3k					~			
•	13%					and the state of t	3		
Elongation Gage Lgth test 1	8IN								
Bend Test Diameter	1.3131	N	,						
Bend Test 1	Passed								

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS:

the property diet, her helm to exploye the contract as or within the lensing at a cognition and as to each relating the conditions undi-	Phone: 934 ier: 12/87 7 7 7 6 Delivery:and remit to:	of jecopie informati maladi straticol approximation of processing and processing	rgres and centres as deen below are close of sharing and dependent. The close of sharing add dependent. The close of sharing add dependent. The close of sharing and control of sharing dependent and	and temper of the acts company and state that is to be an index of the first partial read or course, and a party over all it are countries and all and of the state of the acts of the act	Shipper's No. S/O No. Subject to Section 7 of Copioshes Bill of Lading, if this sidelivered to the consignes with the consignes with the camer shall not make shipment without peyment of other lawful charges. TRINITY HIGHW PRODUCTS, LL Per (Signature of Center III thanges are to be preparation of the property of the property of the property of the property described here. To be Preparation that property described here. Agent or Cashie Per (The signature here acknown by the amount created.) Charges asharose.	delivery of this freight, and all AY C
No. Piece Pkgs. Count	Description of Articles	*Wi. Class or Flate	V No. Piece Cal. Piegs. Court	Description of Ar		Diess or V Rate Col.
10 10 10 10 10 44	110 12/12/6/51.5/8. 320 12/12/6/51.5/8. 320 12/12/6/5/12/8/12/8/12/8/12/8/12/8/12/8/12/8/12		3-PA	Notes		
18 2 16 10 4 6 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4076B WD BLK RTD 6.78 X.14 6019B REPL SHT 13 X.27.5 Y/B LT 6149B WD BLK RTD 6.X 8 X.18 6900G 7/8" X.15.5" HXBLT A.449 5"I 12227G T12/126/3" 1.5.6@16.75/5 14578G 60 PST/8.58/3 XH TX 14785G 60 POST/8.58/3 KH TX 14785G 60 POST/8.58/1 KANB TX 33725A ET+CAM-50, 12% HBA/SYTY 33795G SYT-3" AN STRT 3-HL 66 352474 CONN PL 40" X20" RT MO		GUARDR NMFC CI	AL HWY STEEL ITEM 105460 ASS 50		
18 2 16 10 4 6 12 2 2 2 2 3 FECIAL INSTRUCT SHIPPE 1' the st prient in NOTE - Wheel in NOTE - Wheel in the area of doc.	4076B WD BLK RTD 6.78 X.14 6019B REPL SHT 13 X.27.5 Y/B LT 6149B WD BLK RTD 6.X 8 X.18 6900G 7/8" X.15.5" HXBLT A.449 5"I 12227G T12/126/3" 1.5.6@16.75/5 14578G 60 PST/8.58/3 XH TX 14785G 60 POST/8.58/3 KH TX 14785G 60 POST/8.58/1 KANB TX 33725A ET+CAM-50, 12% HBA/SYTY 33795G SYT-3" AN STRT 3-HL 66 352474 CONN PL 40" X20" RT MO	Quires that the bill of ledings are specifically in writing aretion of values (1 any) of.	GUARDR NMFC CI 16-41901 In agreed or dadared value Pet CONSIGNEE ON AGENT SIGN HERE DRIVER	Received the above described prope the back hereof and agree to the fore	Total Weig	7 3

Certified Analysis

er tilled i tildly sic

Order Number: 1172458

Customer PO: TTI-TEST 490022-

As of: 5/1/12

BOL Number: 41901

Document #: 1

Shipped To: TX

Use State: TX

Project: SAMPLES AND TESTING PROJECT 490022-6

Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg C Mn P S Si Cu Cb Cr Vn ACW
6	11G	12/12'6/3'1.5/S	M-180	A	2	103056	58,600	78,400	29.0 0.190 0.770 0.007 0.001 0.020 0.150 0.00 0.040 0.002 4
			M-180	A	2	137784	64,330	82,800	26.0 0.200 0.810 0.013 0.004 0.020 0.090 0.000 0.050 0.000 4
			M-180	A	2	203516	54,900	79,100	25.0 0.200 0.780 0.009 0.003 0.020 0.130 0.000 0.040 0.002 4
			M-180	A	2	203516	58,600	78,400	29.0 0.190 0.810 0.009 0.002 0.020 0.130 0.000 0.050 0.002 4
			M-180	A	2	203517	60,600	79,600	25.0 0.200 0.780 0.008 0.002 0.020 0.120 0.000 0.050 0.002 4
			M-180	A	2	204446	60,100	80,100	23.0 0.190 0.770 0.010 0.002 0.030 0.140 0.000 0.060 0.002 4
			M-180	Λ	2	a54903	53,600	85,300	27.1 0.210 0.830 0.009 0.004 0.040 0.080 0.000 0.040 0.001 4
			M-180	A	2	A54907	61,600	83,700	21.2 0.210 0.890 0.011 0.004 0.030 0.110 0.000 0.050 0.001 4
			M-180	A	2	A56188	61,600	82,800	27.0 0.220 0.850 0.012 0.004 0.020 0.080 0.000 0.060 0.001 4
			M-180	A	2	C53442	62,700	84,500	25.0 0.220 0.850 0.010 0.006 0.030 0.090 0.000 0.040 0.001 4
			M-180	A	2	C54778	66,200	88,300	23.6 0.210 0.840 0.009 0.004 0.030 0.070 0.000 0.050 0.001 4
2,	32G	12/12'6/6'3/S ET2000 ANC	M-180	Α	2	150045	57,310	75,300	26.0 0.180 0.730 0.017 0.004 0.010 0.130 0.00 0.070 0.000 4
			M-180	A	2	149773	54,310	70,830	31.4 0.190 0.740 0.011 0.003 0.020 0.120 0.000 0.050 0.001 4
			M-180	A	2	150044	55,520	72,990	29.5 0.180 0.720 0.012 0.005 0.010 0.120 0.000 0.060 0.001 4
			M-180	A	2	150046	60,750	79,070	26.0 0.200 0.740 0.009 0.003 0.020 0.120 0.000 0.100 0.001 4
			M-180	Α	2	150058	59,780	77,600	28.0 0.190 0.740 0.008 0.003 0.020 0.130 0.000 0.050 0.001 4
			M-180	Α	2	150060	59,460	76,830	28.5 0.190 0.720 0.009 0.004 0.010 0.130 0.000 0.050 0.001 4
14	533G	6'0 POST/8.5/DDR	A-36			1017684	54,730	71,963	28.2 0.120 0.930 0.011 0.042 0.180 0.340 0.00 0.120 0.003 4
	533G		A-36			1017674	56,593	73,194	30.5 0.110 0.920 0.016 0.035 0.180 0.340 0.00 0.190 0.004 4
2	980G	T10/END SHOE/SLANT	A-36			125745	58,100	66,100	31.9 0.050 0.570 0.012 0.003 0.030 0.100 0.01 0.050 0.000 4
4	12227G	T12/12'6/3'1.5:6@1'6.75/S	M-180	Α	2	151877	58,680	77,470	26.0 0.190 0.720 0.013 0.004 0.010 0.120 0.00 0.050 0.002 4
6	14578G	6'0 PST/8.5#/SYTP	A-36			1018448	59,962	78,876	27.6 0.120 0.930 0.021 0.035 0.180 0.310 0.00 0.190 0.003 4
									1 of 3

2525 STEMMONS FRWY

Customer: SAMPLES, TESTING, TRAINING MTRLS

Trinity Highway Products, LLC

2548 N.E. 28th St.

Ft Worth, TX 76111

Certified Analysis

Shipped To: TX

2548 N.E. 28th St. Order Number: 1172458

Ft Worth, TX 76111 Customer PO: TTI-TEST 490022-

Customer: SAMPLES, TESTING, TRAINING MTRLS BOL Number: 41901

> 2525 STEMMONS FRWY Document #: 1

Use State: TX DALLAS, TX 75207

SAMPLES AND TESTING PROJECT 490022-6

Trinity Highway Products, LLC

Qty	Part#	Description	Spec	CL	ΓΥ Heat Code/ Heat	#	Yield	TS	Elg	C	Mn	P	s	Si	Cu	Сь	Cr	Vn	ACW
12	14784G	7'0 POST/8.5#/3HI TX	A-36		1017007		53,613	72,244	25.7	0.120	0.930	0.012	0.040	0.180	0.360	0.00	0.140	0.003	4
2	14785G	6'0 POST/8.5#/3HI TX	A-36		1017007		53,613	72,244	25.7	0.120	0.930	0.012	0.040	0.180	0.360	0.00	0.140	0.003	4
2	14786G	6'0 POST/8.5#/TRANS TX	A-36		1016659		56,271	73,902	27.5	0.110	0.980	0.023	0.044	0.180	0.320	0.00	0.220	0.004	4
2	33726Л	ET+CAN-50',12'6 HBA/SYTI	P A-36		3031507		53,600	75,900	28.0	0.150	0.910	0.015	0.040	0.190	0.370	0.00	0.090	0.014	4
	33726A		A-500		813U66380	R	56,700	71,300	29.5	0.220	0.790	0.010	0.005	0.022	0.029	0.00	0.030	0.001	4
2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36		3029682		58,000	79,900	33.0	0.160	0.910	0.014	0.023	0.190	0.300	0.00	0.120	0.017	4
2	35247A	CONN PL 40"X20" RT MO	A-36		37482C		44,200	69,500	34.0	0.190	0.750	0.010	0.013	0.011	0.040	0.00	0.050	0.000	4

TL-3 or TL-4 COMPLIANT when installed according to manufactures specifications

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASIITO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT"

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD I." DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH 49100 LB

2 of 3

As of: 5/1/12

Certified Analysis

As of: 5/1/12

Trinity Highway Products, LLC

2548 N.E. 28th St.

Ft Worth, TX 76111

Customer: SAMPLES, TESTING, TRAINING MTRLS

2525 STEMMONS FRWY

DALLAS, TX 75207

SAMPLES AND TESTING PROJECT 490022-6

State of Texas, County of Tarrant. Sworn and subscribed before me this 1st day of May, 2012

Notary Public:

Project:

Commission Expires:

Order Number: 1172458

Customer PO: TTI-TEST 490022-

BOL Number: 41901

Document #: 1

Shipped To: TX

Use State: TX

Trinity Highway Pred

Certified By:

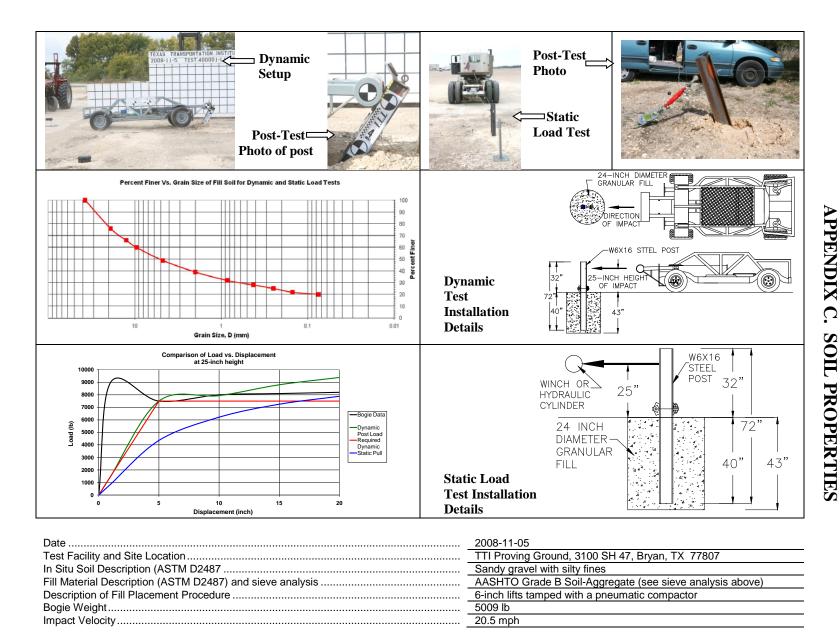
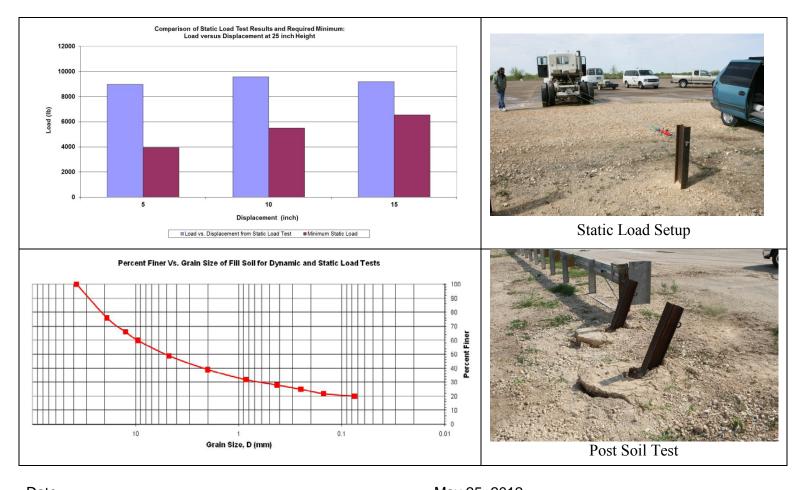
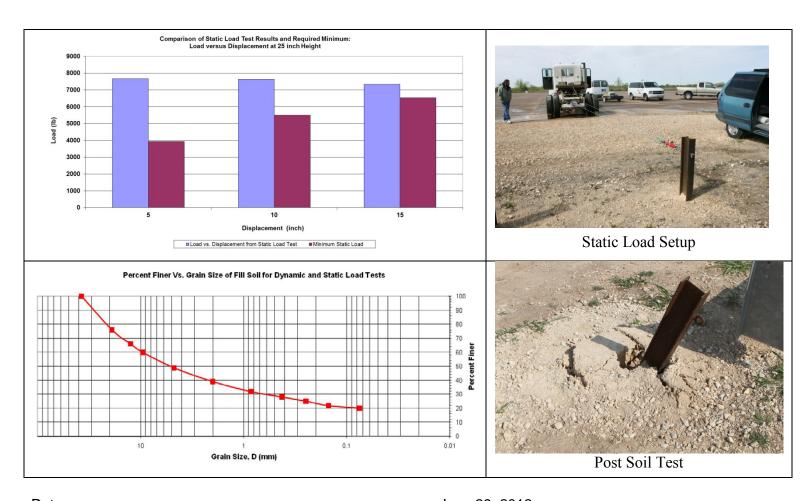




Figure C1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

Date	May 25, 2012
Test Facility and Site Location	TTI Proving Ground, 3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Figure C2. Test Day Static Soil Strength Documentation for Test No. 490022-6.

Date	June 29, 2012
Test Facility and Site Location	TTI Proving Ground, 3100 SH 47, Bryan, TX
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Figure C3. Test Day Static Soil Strength Documentation for Test No. 490022-8.

APPENDIX D. CRASH TEST NO. 490022-6 (MASH TEST 3-20)

D1. TEST VEHICLE PROPERTIES AND INFORMATION

Table D1. Vehicle Properties for Test No. 490022-6.

Date: 2012	-05-25	Test No.:	490022-6	_	VIN No.:	KNADE1	23366068232	
Year: 2006		Make:	Kia		Model:	Rio		
Tire Inflation P	ressure: 32	: psi	Odometer:	119617		Tire Size:	P185/65R14	<u>. </u>
Describe any o	damage to the	vehicle prio	r to test:					
Denotes according	celerometer lo	cation.					ACCELEROMETERS note:	
NOTES:			. A WHEEL TRACK			Œ.		WHEEL N T
Engine Type: Engine CID:	4 cylinder 1.6 liter		M TRACK	=		VEHIC	SLE	TRACK
Transmission Auto X Auto X FWD Optional Equip	or RWD	_ Manual 4WD	TIRE WHEEL		-	TEST	NERTIAL C.M.	E
Dummy Data: Type: Mass: Seat Position	179 lb	entile male		F	W H	G S S	M _{rear} D	
•	inches		-			_ C		
A 66.38	F_	33.00	-	11.00	Р_	4.12	_ U	15.75
B 57.75	G_	0.4.70	-	24.12	Q _	22.19	_ V	21.50
C 165.75	H _	34.72		57.75	R _	15.38	_ W	39.50
D 34.00 E 98.75	l _ J	7.12		57.12 30.62	S _ T	7.62 66.12	_ X	108.50
Wheel Center		11.00	Wheel Cent		_	11.00	_	
GVWR Ratin	qs:	Mass: lb	<u>Curb</u>		Test	<u>Inertial</u>	Gross	Static
Front	1918	M_{front}		598		1577		1670
Back	1874	M_{rear}		891		852		932
Total	3638	M_{Total}	2	489		2423		2602
Mass Distribu	tion: LF:	763	RF:	808	LR:	460	RR:39	2

Table D2. Exterior Crush Measurements for Test No. 490022-6.

Date:	2012-05-25	_ l est No.:	490022-6		VIN No.:	KNADE123366068232
Year:	2006	_ Make:	Kia		Model:	Rio
	•	VEHICLE (CRUSH MEA	ASUREM	MENT SHE	EET ¹
			Complete Who	en Applical	ble	
	End Da	ımage			S	ide Damage
	Undeformed	d end width _			Bowing: B1	X1
	Corn	er shift: A1 _			B2	2 X2
		A2 _				
	End shift at fran	ne (CDC)		Во	wing constar	nt

Note: Measure C₁ to C₆ from Driver to Passenger side in Front or Rear impacts – Rear to Front in Side Impacts.

c : c		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	12	12	18	12	8	6	5.5	3	0	-9
2	Side plane at bumper ht	20	11	48	0	1.5	6.75	8.5	9	11	152
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

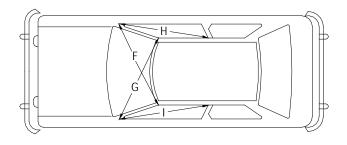
(check one)

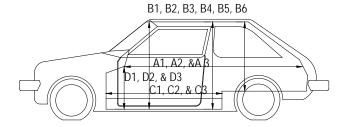
< 4 inches _____ ≥ 4 inches

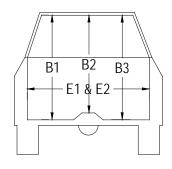
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table D3. Occupant Compartment Measurements for Test No. 490022-6.

Date: 2012-05-25 Test No.: 490022-6 VIN No.: KNADE123366068232

Year: 2006 Make: Kia Model: Rio

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before (inches)	After (inches)
A1	67.50	67.38
A2	67.50	67.50
A3	67.50	67.50
B1	40.75	40.75
B2	36.75	36.75
B3	40.75	40.75
B4	36.25	36.25
B5	35.75	35.75
B6	36.25	36.25
C1	26.00	26.00
C2		
C3	27.5	27.5
D1	9.75	9.75
D2		
D3	9.50	9.50
E1	51.00	48.50
E2	51.00	52.25
F	51.00	51.00
G	51.00	50.00
Н	37.00	37.00
I	37.00	37.00
J*	50.75	50.50

^{*}Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

Figure D1. Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views).

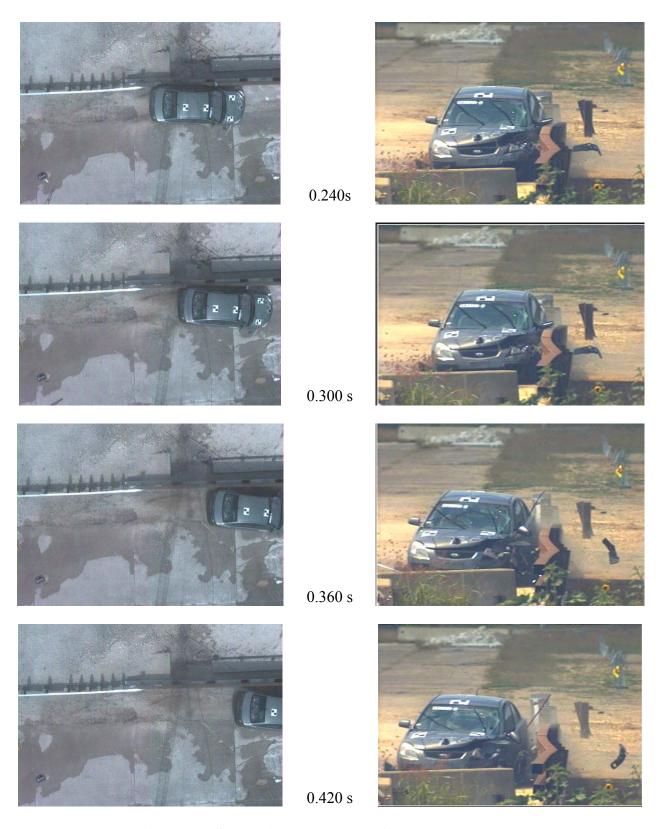


Figure D1. Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views) (continued).

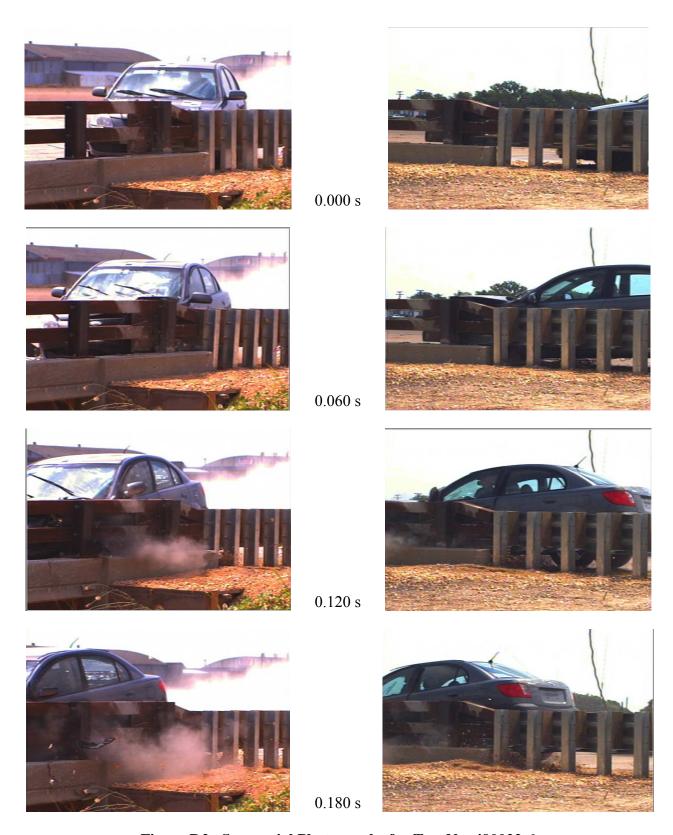


Figure D2. Sequential Photographs for Test No. 490022-6 (Field Side Transition Views).

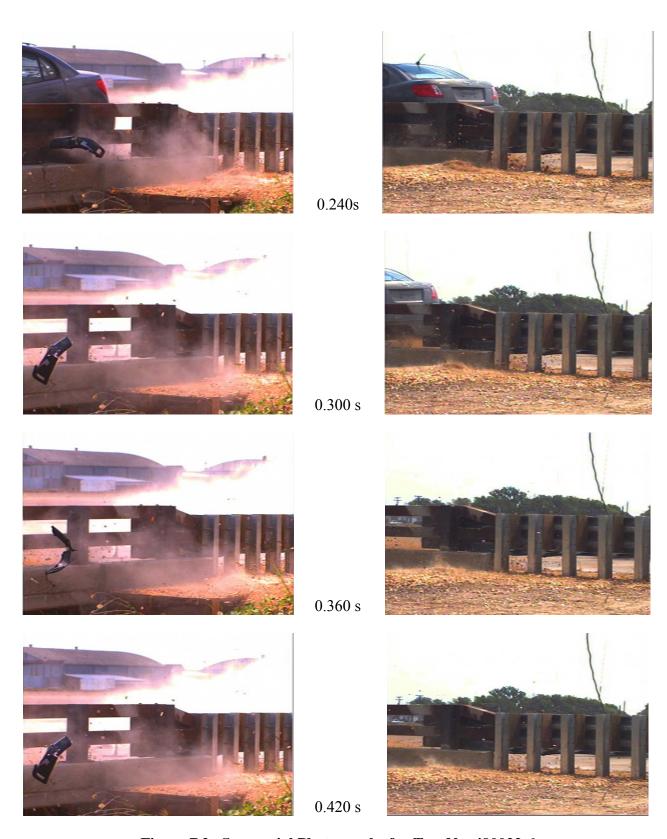


Figure D2. Sequential Photographs for Test No. 490022-6 (Field Side Transition Views) (continued).

Figure D3. Vehicle Angular Displacements for Test No. 490022-6.

Figure D4. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

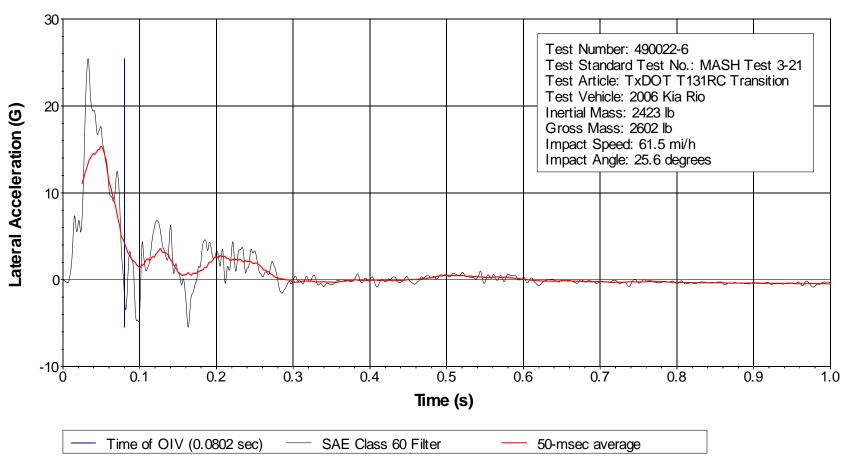


Figure D5. Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).

SAE Class 60 Filter

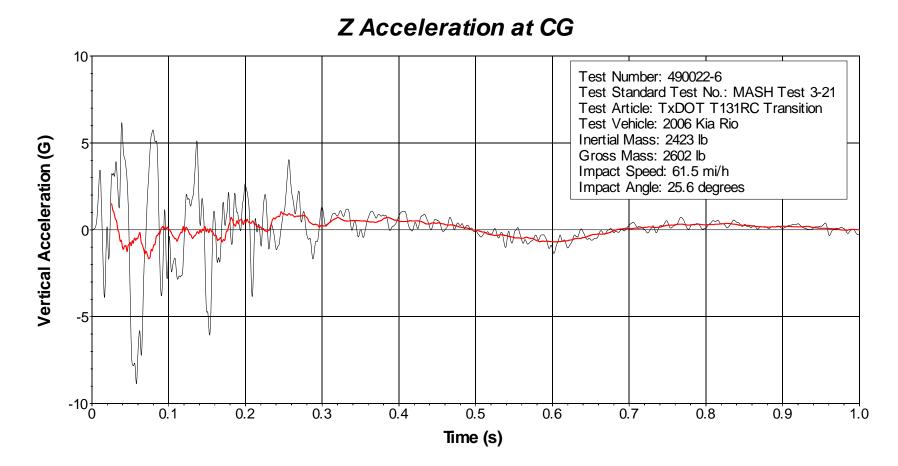


Figure D6. Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).

50-msec average

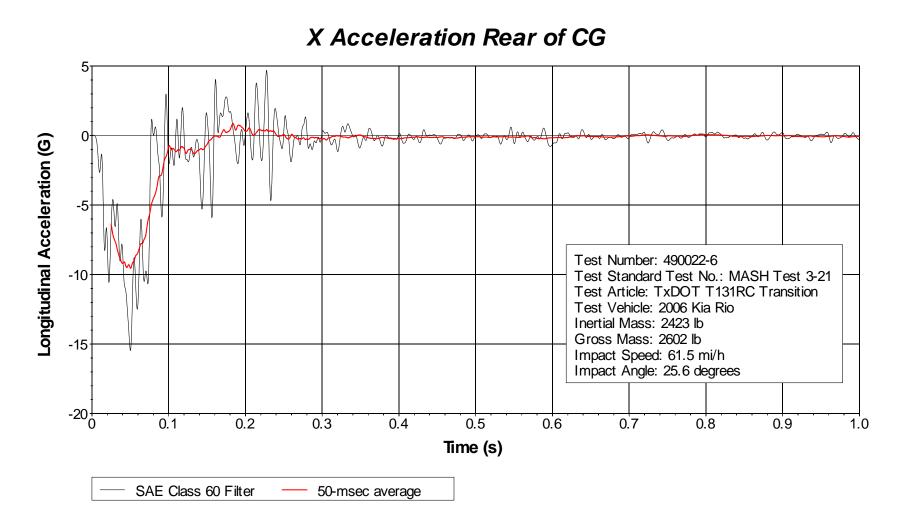


Figure D7. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

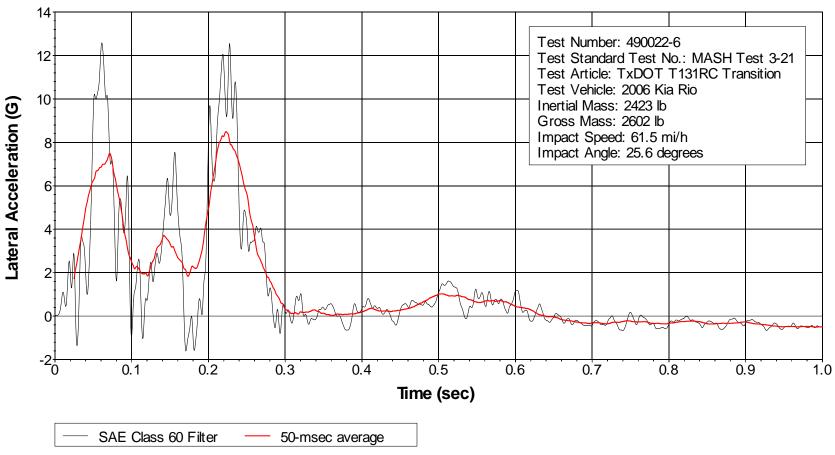


Figure D8. Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

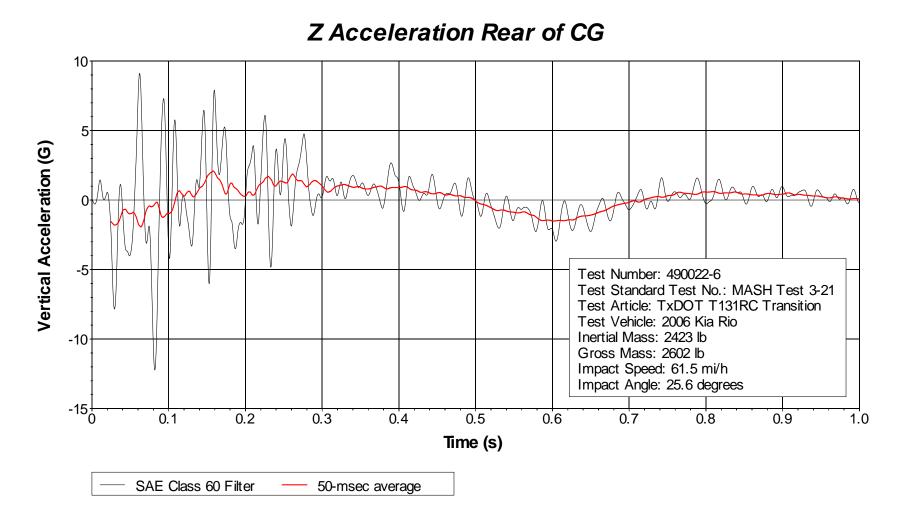


Figure D9. Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

APPENDIX E. CRASH TEST NO. 490022-8 (MASH TEST 3-21)

E1. TEST VEHICLE PROPERTIES AND INFORMATION

Table E1. Vehicle Properties for Test No. 490022-8.

Date	: 2012-0	06-29	Test No.:	490022-8		VIN No.:	1DTHA18218	3J0415	0
Year	2008		Make:	Dodge		Model:	Ram 1500		
Tire \$	Size: _:	265/70R17			Tire	Inflation Pres	sure: 35 psi		
Trea	d Type:	Highway				Odon	neter: <u>139849</u>	9	
Note	any dama	ge to the ve	hicle prior to	test:					
• De	enotes acce	elerometer lo	ocation.			X — X —	-		
NOT				A .		*77		<u> </u>	<u> </u>
				_]					
	ne Type: ne CID:	V-8 5.7 liter		A M	EL :K				WHEEL TRACK
Trans	smission T	уре:		<u>* </u>			TEST IN	ERTIAL C. M.	
X	_ Auto	or x RWD	_ Manual 4WD		, P	+ Q →			
			400	P	R				
Optic	onal Equipn	nent:		1				\sim	
Dum Typ	my Data:	No dumn	ny	J J I		U U	L _V L _S	D)_	
Mas				-	⊸ F −	H—H	⊢G - V - S - F - F - S - S - S - S - S - S - S	- D-	-
Sea	at Position:			_		V M FRONT	,	M REAR	
	-	nches			-4	A University of States	_ c		-
A _	78.25	F	36.00	_ K	20.50	_ P_	2.88	U _	28.50
B _	75.00	G_	29.00	_ L	29.12	_	31.25	V _	29.50
C _	223.75	_ H.	61.21	_ M	68.50	_ R _	18.38	W _	59.50
D _	47.25	_ '	13.75	_ N	68.00	_ s_	12.00	Χ_	78.00
E ,	140.50 Wheel Center		25.38 14.75 Ck	_ O Wheel Well	44.50	T 5.00	77.50 Bottom Frame	=	17.125
,	Height Front Wheel Center			earance (Front) Wheel Well			Height - Front Bottom Frame		
	Height Rear	•	14.75 CI	earance (Rear)		10.25	Height - Rear		24.75
G۷۱	WR Rating	s:	Mass: It	Cu	<u>rb</u>	Test	<u>Inertial</u>	Gro	ss Static
Fron	nt	3700	M_{front}		2870		2830		
Bac	k	3900	M_{rear}		2152		2185		
Tota	al	6700	M_{Total}		5022		5015		
Mass	s Distribut	ion:							
lb		LF:	1426	RF:	1404	LR:	1069 RI	R:	1116

Table E2. Vehicle Parametric Measurements for Vertical CG.

Date: 2012-06	5-29 Te	st No.: 49	90022-8	\	/IN: <u>1D1</u>	HA1821	18J0415	<u>)</u>	
Year: 2008		Make: D	odge		Model: _F	Ram 15	00		
Body Style: Q	uad Cab			N	/lileage:	139849			
Engine: 5.7 lit	er V-8			Transr	nission: _/	Automa	tic		
Fuel Level: E	mpty	Balla	ıst: <u>80 l</u>	bs in front	of bed			(440 lb	max)
Tire Pressure:	Front: 3	<u>85</u> psi	Rear	: 35	psi Siz	ze: <u>26</u> 5	5/70R17	7	
Measured Ve	hicle Wei	ghts: (l	b)						
LF:	1426		RF:	1404		Fror	nt Axle:	2830	
LR:	1069		RR:	1116		Rea	ar Axle:	2185	
Left:	2495		Right:	2520			Total:		
							5000 ±11	0 lb allow ed	
Wh	eel Base:	140.5	inches	Track: F:	68.5	inches	R:	68	inches
	148 ±12 inch	es allow ed			Track = (F+F	R)/2 = 67 ±	:1.5 inches	s allow ed	
Center of Gra	vity, SAE	J874 Sus	spension N	/lethod					
X:	61.21	in	Rear of F	ront Axle	(63 ±4 inche	s allow ed	1)		
Y:	0.17	in	Left -	Right +	of Vehicle	e Cente	rline		
Z:	29	in	Above Gr	ound	(minumum 28	3.0 inches	allow ed)		
الماللة ما الماسا	.4.	44.50	:	Frant D			0	5 075 in a	
Hood Heigh		thes allowed	inches	FIONUB	umper nei	gnt:		5.375 inc	nes
Front Overhan	g:	36.00	inches	Rear B	umper Hei	ght:	2	9.125_ inc	ches
	39 ±3 inc	ches allowed							
Overall Lengt	·								
	227 ±12	inches allower	4						

Table E3. Exterior Crush Measurements for Test No. 490022-8.

Date:	2012-06-29	rest no.:	490022-8	VIN No.:	1DTHA18218J04150
Year:	2008	Make:	Dodge	Model:	Ram 1500
		VEHICLE C	RUSH MEA	SUREMENT SHE	EET ¹
		(Complete Whe	n Applicable	
	End I	Damage		S	ide Damage
	Undeform	ed end width		Bowing: B1	X1
	Con	rner shift: A1		B2	2 X2
		A2			
	End shift at fr	ame (CDC)		Bowing constar	nt
	(check	one)		X1 + X2	_
		< 4 inches		2	-
		\geq 4 inches			

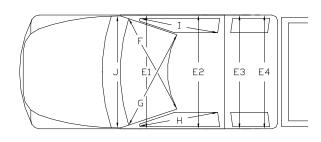
TYOUC. IVICA	sure C_1 to C_6 from Driver	to rasseng	ci side ili i	TOIL OF I	ccai iiii	ipacis -	- Kcar t	O PIOII	ı III Siu	c mpa	Cis.
		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C ₄	C ₅	C ₆	±D
							<u>_</u>				
Meas	urements not taken d										

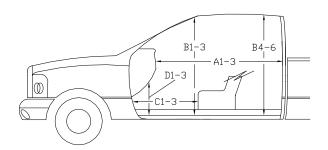
¹Table taken from National Accident Sampling System (NASS).

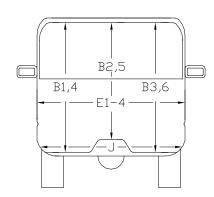
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.


Table E4. Occupant Compartment Measurements for Test No. 490022-8.

Date: 2012-06-29 Test No.: 490022-8 VIN No.: 1DTHA18218J04150

Year: <u>2008</u> Make: <u>Dodge</u> Model: <u>Ram 1500</u>

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

A1 65.00 65.00 A2 64.50 64.50 A3 65.00 65.00 B1 45.50 45.50 B2 39.12 39.12 B3 45.50 45.50 B4 42.12 42.12 B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
A3 65.00 65.00 B1 45.50 45.50 B2 39.12 39.12 B3 45.50 45.50 B4 42.12 42.12 B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
B1 45.50 45.50 B2 39.12 39.12 B3 45.50 45.50 B4 42.12 42.12 B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
B2 39.12 B3 45.50 B4 42.12 B5 42.62 B6 42.12 C1 29.00 29.00 39.12 39.12 45.50 42.12 42.62 42.12 29.00
B3 45.50 45.50 B4 42.12 42.12 B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
B4 42.12 42.12 B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
B5 42.62 42.62 B6 42.12 42.12 C1 29.00 29.00
B6 42.12 42.12 C1 29.00 29.00
C1 29.00 29.00

C2
C3 <u>27.00</u> <u>27.00</u>
D1 12.88 12.88
D2
D3 <u>11.75</u> <u>11.75</u>
E1 <u>62.75</u> <u>62.50</u>
E2 64.50 64.50
E3 64.12 64.12
E4 64.12 64.12
F 60.00 60.00
G 60.00 60.00
H <u>39.00</u> <u>39.00</u>
I <u>39.00</u> <u>39.00</u>
J* 62.00 61.88

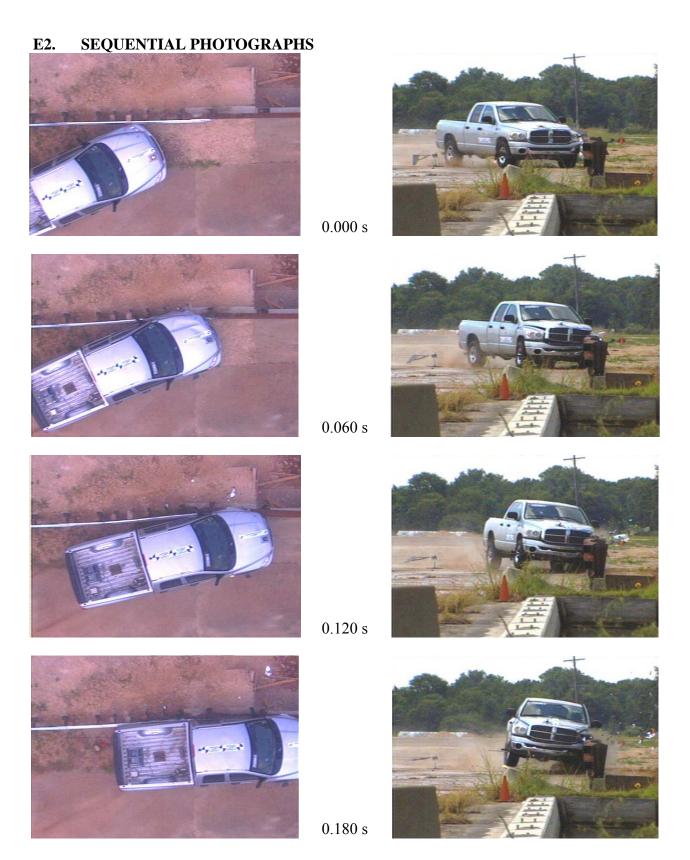


Figure E1. Sequential Photographs for Test No. 490022-8 (Overhead and Frontal Views).

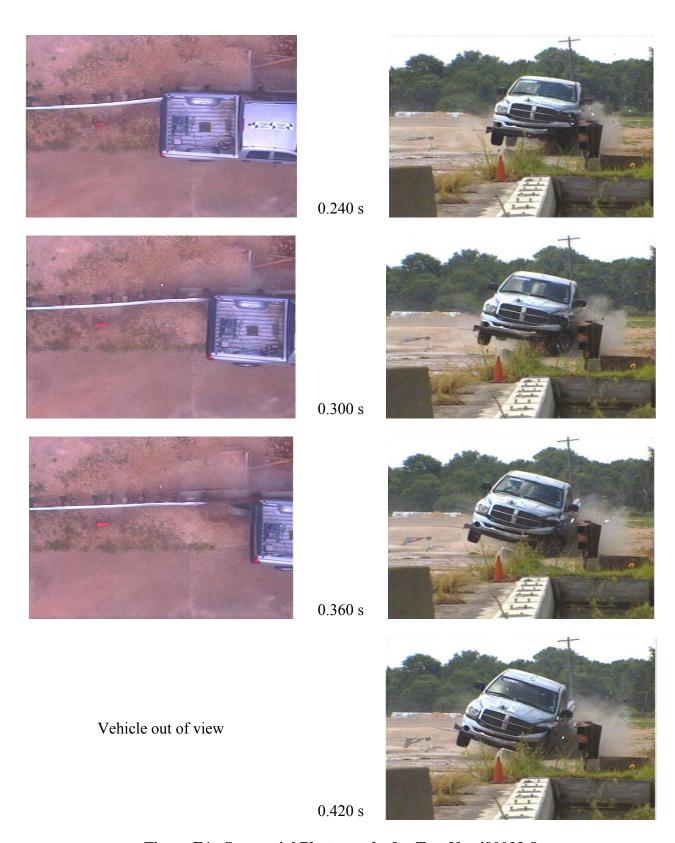


Figure E1. Sequential Photographs for Test No. 490022-8 (Overhead and Frontal Views) (continued).

Figure E2. Vehicle Angular Displacements for Test No. 490022-8.

Figure E3. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

20

Lateral Acceleration (G)

Y Acceleration at CG Test Number: 490022-8 Test Standard No.: MASH Test 3-21 Test Article: TxDOT T131RC Transition Test Vehicle: 2008 Dodge Ram 1500 Pickup Inertial Mass: 5015 lb Impact Speed: 62.7 mi/h Impact Angle: 25.1 degrees

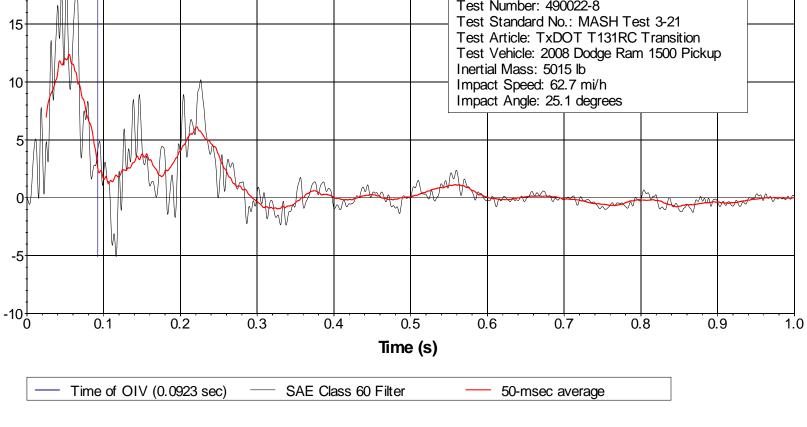


Figure E4. Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

Figure E5. Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

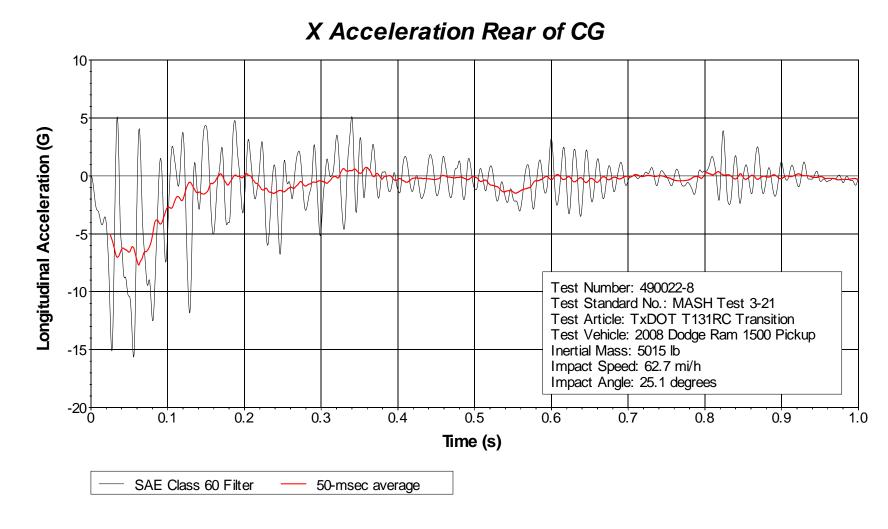


Figure E6. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

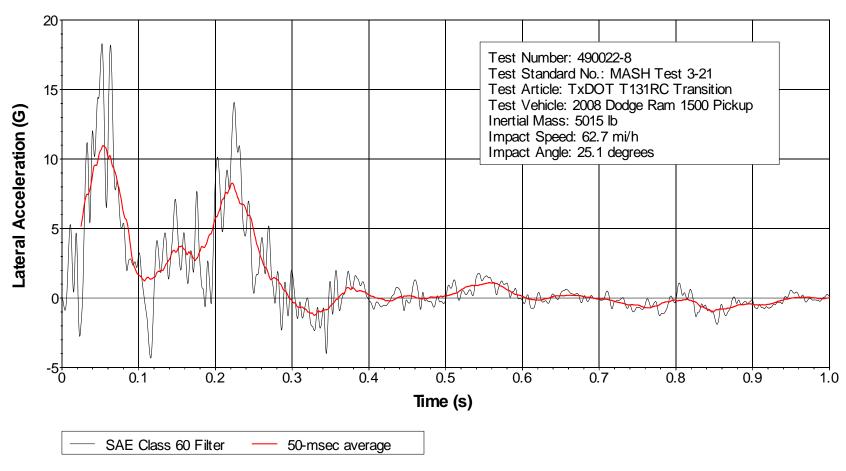
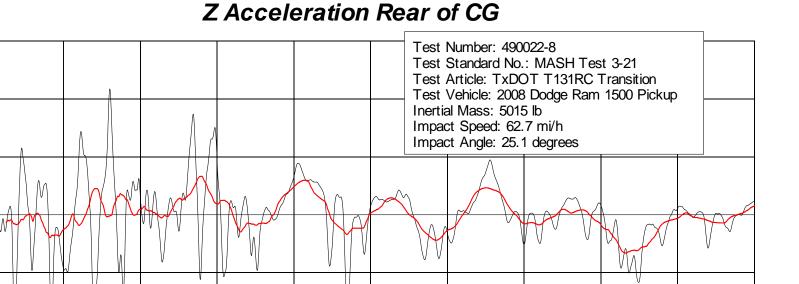


Figure E7. Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).

15


10

-10

-15 0

0.1

Vertical Acceleration (G)

— SAE Class 60 Filter — 50-msec average

0.3

0.4

0.2

Figure E8. Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).

0.5

Time (s)

0.6

0.7

8.0

0.9

1.0